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Abstract

This first of two companion papers develops a new variational principle for the buckling analysis of thin-walled members based on the

principle of stationary complementary energy. Some of the aspects of the Vlasov thin-walled beam theory (the rigid cross section

assumption, and the stress expressions) are postulated to describe the behavior of members while other aspects of the theory (i.e., the zero

shear strain assumption at mid-surface) are discarded. Koiter’s formulation based on polar decomposition theory in finite elasticity is

adopted to formulate expressions for statically admissible stress resultant fields. The stationarity conditions of the complementary energy

expression are then evoked to yield the conditions of neutral stability and associated boundary conditions in which the rotation fields

appear explicitly. The formulation seamlessly incorporates shear deformation effects and load position effects. Also, the Wagner effect

and the mono-symmetry property which arise in displacement based formulations arise in the present formulation in a natural way.
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1. Introduction and motivation

Buckling Phenomena play an important role in deter-
mining the resistance of steel members. Within this
context, the present study aims at developing a new
variational principle for the buckling analysis for thin-
walled members of mono-symmetric cross-sections which
captures shear deformation effects as well as load position
effects relative to the shear center. In contrast to most
buckling solutions for thin-walled members which are
based on the principle of stationary potential energy, the
current solution is based on the principle of stationary
complementary energy which has the advantage of
naturally incorporating shear deformation effects. Also,
in contrast to other theories which are based on orthogonal
coordinate systems, the present solution adopts a general
non-orthogonal coordinate system in order to provide
a natural framework to incorporate the load position
effects. The solution adopts the first Vlasov assumption

(i.e., the section acts as a rigid disc within the plane of the
cross-section throughout deformation) and the expressions
for normal and shear stresses based on the Vlasov theory,
and relaxes the second Vlasov assumption (i.e., the
vanishing shear strains at the section mid-surface). The
variational principle is based on the polar decomposition
theory in expressing the buckling stresses in the deformed
configuration.
In general, global buckling is associated with long

members for which shear deformation effects become
negligible. Therefore, shear deformation effects have
justifiably been omitted in most buckling solutions by
analysts. Recent work [1] based on established shell finite
element solutions has shown that for certain frame
configurations (e.g., a long column supporting a short
cantilever both made of wide flange sections), neglecting
shear deformation effects in the cantilever portion was
shown to lead to a significant overestimation of the lateral
buckling load of the frame. Within this context, the present
formulation attempts to capture shear deformation effects
for thin-walled members while capturing lateral torsional
buckling behavior.
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Nomenclature

A cross-sectional area
Ap pole (Figs. 4a and b)
ax, ay coordinates of arbitrary pole Ap (Fig. 4b)
Ā; S̄x; S̄y; S̄o functions to relate stress resultant func-

tions to shear stresses
C centroid
C2� 2 matrix due to external loading
D4� 4 matrix of cross-sectional properties
Dr2� 2 reduced matrix of cross-sectional properties
Dij first Piola–Kirchoff stress tensor
dl1 un-deformed length for an infinitesimal element

along the principal direction
dL1 deformed length for an infinitesimal element

along the principal direction
~e0 unit vectors along the principal strain directions

of the un-deformed parallelepiped
~e unit vectors along the principal strain directions

of the deformed parallelepiped
fj forces acting on the surfaces of infinitesimal

parallelepiped
E modulus of elasticity
Fij deformation gradient tensor
G shear modulus
h(s) normal distance between pole and the tangent

to mid-surface
Ip, Ipy, Ipx, Ipo cross-sectional properties
~i0j unit vectors along X, Y and Z directions
Jd St. Venant’s torsional constant
Jxx, Jyy, Jxy, Jox, Joy section moments of inertia and

products of inertia
Joo second moment of the sectorial coordinate
L length of a member
Mp

x;M
p
y stress resultant functions in prebuckling range

Np;Vp
x;V

p
y;T

p;Tp
w;T

p
sv stress resultant functions in

prebuckling range
O origin
P1, P2, P3, M, T forces and moments acting on a

member (Fig. 1)
Pe external load potential
Rij rigid body rotation tensor
r coordinate normal to the section mid surface

(Fig. 5)
rN0 radius of gyration in non-orthogonal coordi-

nates
s curvilinear coordinate along mid surface

(Figs. 4 and 5)
S0 sectorial origin (Fig. 4)

S.C shear center
Sx;Sy;So first moments of area of coordinates x, y,

and o
t(s) thickness of the thin-wall segment (Fig. 5)
T total twisting moment
Tsv St. Venant torsion
Tw warping torsion
U* complementary strain energy
u(z), v(z) displacements along x, y directions of

arbitrary pole (Fig. 4a)
usðs; zÞ; vsðs; zÞ horizontal and vertical displacements of

arbitrary point Bp located on section mid-
surface (Fig. 4a)

V volume of element

W Wagner stress resultant

Wi
internal strain energy density

W* complementary strain energy density
x,y,z material coordinates of a point (Fig. 2)
X,Y,Z spatial coordinates of a point (Fig. 2)
a angle between the tangent to the contour and

the x axis
bNx mono-symmetry property in non-orthogonal

coordinates
dij Kronecker’s delta
DN;DVx;DVy stress resultant increments due to buck-

ling
DT ;DTw;DTsvMx;My stress resultant increments due

to buckling
DuðzÞ;DvðzÞ displacements increments due to buckling

along X, Y directions
DfZ(z) rotation increment due to buckling about Z

axis
eij right extensional strain tensor
eimj permutation symbol
fX, fY, fZ rotation vector components about X, Y and

Z directions
l buckling load factor
v2� 2 matrix associated with the distribution of shear

stress on the cross-section
n Poisson’s ratio
p* total complementary energy
sij Jaumann stress tensor
sc constant component of Jaumann stress along

the thickness
sr vanishing component of Jaumann stress

(Fig. 5)
ssv Jaumann stress due to St. Venant torsion

(Fig. 5)
o sectorial area (Fig. 4b)
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