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Abstract

Three finite-strip methods, (FSM) namely the semi-energy, full-energy semi-analytical and the full-energy spline FSM, are developed

for predicting the geometrically non-linear response of box sections with simply supported ends when subjected to uniform end

shortening in their plane. The developed FSMs are then applied to analyze the post-local-buckling behavior of some representative box

sections. Although, in general, a very good agreement is observed to exist among the results obtained by all the different methods, it is

revealed that in the advanced stages of post-buckling, the semi-energy method predicts results which are slightly less accurate than those

obtained by the full-energy methods. This is due to the fact that a slightly higher level of compressional stiffness is experienced in the case

of the results obtained by the semi-energy approach as compared to those observed in the cases of the results obtained by the full-energy

methods. It is however worth noting that the current semi-energy analysis is based on a single term approach. Thus, it is expected that the

accuracy of the semi-energy approach will improve and correspondingly the number of degrees of freedom involved will increase if more

than one term is utilized in its formulation.
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1. Introduction

Prismatic plates and plate structures are increasingly
used as structural components in various branches of
engineering, chief of which are aerospace and marine
engineering. These structures are often employed in
situations where they are subjected to in-plane compressive
loading and thus it is of considerable importance to be able
to accurately predict the buckling and post-buckling
behavior of such structures. In aerospace, in particular,
the quest for efficient, light-weight structures often leads to
allowing for the possibility of local buckling and post-
local-buckling behaviour. This would occur at load levels
in excess of the limit conditions described by the flight
envelope of an aircraft and thus the post-local-buckling
reserve of load carrying capability of such structures is

utilized between the limit and ultimate failure conditions of
the aircraft structure.
An example of the local buckling mode of a typical strut

in compression is shown in Fig. 1. As can be seen, the local
buckling involves out-of-plane deflections on the web and
flanges. The out-of-plane deflections grow in a stable
manner as the load increases inside the post-buckling
region (i.e. as the load increases beyond its critical local
buckling value). The growth in the out-of-plane deflections
is accompanied by continuous alterations in the stress
system within the cross-section. The changes in out-of-
plane deflections and the alteration in the stress system
cause both the compressional and the flexural stiffness to
decrease.
The post-local-buckling behavior of elastic plates or

plate structures is a geometric non-linear problem. The
non-linearity occurs as a result of relatively large out-of-
plane deflections, which necessitates the inclusion of non-
linear terms in the strain–displacement equations.
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The non-linear equations governing the elastic large
deflection of flat plates were first derived by von Kármán.
The post-local-buckling behavior of a plate can be
analyzed by solving the von Kármán non-linear equations,
together with the appropriate boundary conditions. Un-
fortunately, the von Kármán equations are coupled and
fourth order, and thus no rigorous solutions are available.
This clearly indicates that the extension of the non-linear
equations from a single plate analysis to the plate structure
analysis will involve even more complexity. All these have
prepared the ground for the development of the approx-
imate methods to solve the post-local-buckling problem of
plates and plate structures. These approximate methods are
primarily based on the principle of minimum potential
energy.

Among the energy-based approximate methods, the
finite-element method (FEM) has become the dominant
form of geometrically non-linear structural analysis.
However, although the FEM has no limitation regarding
boundary conditions and local discontinuities such as
openings in plates, the large number of degrees of freedom,
and thus considerable computational effort required in the
non-linear analysis of plates and plate structures may be
considered as a deterrent factor.

For the case of prismatic structures, the finite-strip
method (FSM) [1,2], which is a special form of the FEM,
has proved to be a capable tool for analyzing the post-
buckling behavior of plates and plate structures. As far as
the computational expense is concerned, the FSM can be
significantly more efficient than the FSM.

Typical examples of a plate and a strut that are modeled
by finite strips are shown in Fig. 2. It is seen that the

structure is divided into longitudinal strips, which are
joined at longitudinal nodal lines coinciding with the strip
edges.
Early works concerned with the use of the FSM in

predicting the geometrically non-linear response of single
rectangular plates and prismatic plate structures are those
of Graves Smith and Sridharan [1–5] and Hancock [6].
These authors consider the post-buckling behavior of
plates with simply supported ends when subjected to
progressive end shortening. They also consider the post-
buckling behavior of plate structures subjected to uniform
[1–3,5] or linearly varying [4,6] end shortening, with each
component plate of the structure having simply supported
ends. The elastic post-buckling response of channel section
struts [1] and rectangular box columns [2,3,5] have been
investigated by Graves Smith and Sridharan. Hancock [6]
uses the FSM to investigate the post-buckling behavior of
square box and I-section columns. In the FSMs developed
by the aforementioned authors, in-plane displacement
fields are postulated in addition to the out-of-plane
displacement field. The lengthwise variations in the
displacement fields are trigonometric functions. The cross-
wise variations in both in-plane and out-of-plane displace-
ment fields are simple polynomial functions. It may be
noted that the above-mentioned FSMs can be categorized
as semi-analytical FSM. It may also be noted that this type
of FSM in which all the displacement fields are postulated
by the appropriate shape functions from the onset of
analysis is to be designated as the full-energy FSM in the
current paper.
In the FSM developed by Graves Smith and Sridharan,

the postulated forms of the longitudinal trigonometric
functions are obtained with the aid of von Kármán plate
equations using a perturbation technique. The displace-
ment fields used by Graves Smith and Sridharan are
appropriate for plate structures whose component plates
are perfectly flat. However, this is not the case for the FSM
developed by Hancock, in which slightly different displace-
ment fields from those of Graves Smith and Sridharan are
used in order to allow for the effects of the geometric
imperfections to be included. The FSM developed by
Hancock is appropriate only for those post-local-buckling
problems in which the plate junctions are assumed not to
move appreciably during the deformation process. How-
ever, the FSM developed by Graves Smith and Sridharan
can handle both the aforementioned problems as well as

ARTICLE IN PRESS

Junction or Corner 

P 

P 

Nodal Lines  

Local Buckles 

Fig. 1. A strut buckled locally.
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Fig. 2. Plate structures discretized by finite strips.

H.R. Ovesy et al. / Thin-Walled Structures 44 (2006) 623–637624



Download English Version:

https://daneshyari.com/en/article/309736

Download Persian Version:

https://daneshyari.com/article/309736

Daneshyari.com

https://daneshyari.com/en/article/309736
https://daneshyari.com/article/309736
https://daneshyari.com

