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a b s t r a c t

In the present investigation, dynamic instability behavior is studied for the two laminated composite

shells having twist radius of curvature, viz., hypar (hyperbolic paraboloid bounded by straight lines,

HYP) and conoid (CON). A higher-order shear deformation theory is employed in the C0 finite element

formulation. Higher-order terms in the Taylor’s series expansion are used to represent the higher-order

transverse cross sectional deformation modes. The formulation includes Sanders’ approximation for

doubly curved shells considering the effect of transverse shear. The boundaries of dynamic instability

regions are obtained using Bolotin’s approach. The structural system is considered to be undamped. The

correctness of the formulation is established by comparing the authors’ results of problems with those

available in the published literature. The effects of different parameters are studied on the dynamic

instability regions of laminated HYP and CON shells.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Shell structures are extensively used in aerospace, civil, marine
and other engineering applications. In civil engineering construc-
tions, doubly curved hypar (Fig. 1a) and conoid (Fig. 1b) shells are
commonly used as roofing units. These shell forms are architec-
turally appealing and frequently favored for roofing large column-
free areas. Hypar shells having only the twist curvature are
preferred in many situations as they have ruled surface and
aesthetic appeal. On the other hand, aesthetically appealing
conoid shells are singly ruled surface, and hence easy to cast in
addition to efficiencies in penetration of natural light. Use of
composite materials in these structural components resulted in
reducing the weight to increase their performance. These light
weight and thin walled structural components are susceptible to a
variety of time-dependent and time-independent in-plane as well
as out-of-plane loads. Therefore, it is necessary to have a better
understanding of their dynamic stability characteristics leading to
local or global failures.

Structural elements subjected to in-plane periodic forces may
induce transverse vibration. Resonance, known as parametric
resonance, may occur for certain combinations of natural
frequency of transverse vibration, the frequency of the in-plane
forcing functions and the magnitude of the in-plane load. The

spectrum of values of parameters causing unstable motion is
referred to as the regions of dynamic instability.

The subject of dynamic instability had been of considerable
interest since Bolotin [1] provided numerous problems on
stability of structures under pulsating loads. He constructed the
instability regions by using the Fourier analysis. Extensive
researches on this problem and further results were reported by
Evan-Iwanowski [2], Ibrahim [3] and Simitses [4]. The Lyapunov
direct method was used to define the stability of a cylindrical shell
under radial pressure by Bieniek et al. [5] and the solutions
for the prebuckling and perturbated motions were obtained by
the use of Galerkin method. Evensen and Evan-Iwanowski [6]
studied the dynamic response of completely clamped shallow and
thin elastic spherical shells. Yamaki and Nagai [7] investigated the
dynamic stability of circular cylindrical shell subjected to periodic
shearing forces on the basis of Donnell type equations modified
with the transverse inertia force. Yamaki and Nagai [8] also
studied the dynamic stability of circular cylindrical shells under
four types of boundary conditions, using Galerkin procedure and
Hsu’s method. It was found that the effect of longitudinal
resonance was generally negligible for thin shells. Kratzig and
Eller [9] developed numerical procedures for the dynamic
stability analysis of nonlinear, dynamically excited shell struc-
tures. Special algorithms were deduced for the treatment of
dynamic snap-through phenomena, dynamic quasi-bifurcations
and parametric resonances.

Problems of dynamic instability of composite cylindrical shells
were studied by Vol’mir and Smetanina [10], Goroshko and
Emel’yanenko [11] and Bondarenko and Galaka [12]. Ray [13] and
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Ray and Bert [14] investigated parametric resonance type of
dynamic stability of suddenly heated, long circular cylindrical
composite shells. Effect of shear deformation of thick composite
shells on their dynamic stability was investigated by Bogdanovich
[15] and Bert and Birman [16]. Birman and Bert [17] studied the
effect of the presence of thermal field on the dynamic stability of
reinforced composite cylindrical shells subjected to pulsating
loads. Cederbaum [18] analyzed parametrically excited laminated
shells using the method of multiple scales (MMS). Argento and
Scott [19,20] provided theoretical development and numerical
results for dynamic instability of layered anisotropic cylindrical
shells with clamped supports. Ganapathi et al. [21] used the finite
element method to study the dynamic instability of laminated
composite curved panels. Liao and Cheng [22] applied MMS to
analyze the dynamic instability regions of stiffened laminated
plates and shells. Lam and Ng [23] studied the dynamic stability of
cylindrical shells using four different shell theories of Donnell,
Love, Sanders and Flügge. Using Love’s theory, Lam and Ng [24]
investigated dynamic stability of laminated composite cylindrical
shells subjected to conservative periodic axial loads.

Ng et al. [25–28] carried out authoritative investigations on
different aspects of dynamic stability of shells. Sahu and Datta
[29,30] studied parametric instability of doubly curved panels
subjected to various uniform, non-uniform, partial and concen-
trated loadings, using Sanders’ shell theory. Zhang et al. [31]
studied the dynamic stability of doubly curved orthotropic
shallow shells under an impact. The governing nonlinear
differential equations were derived based on a Donnell type
shallow shell theory. The nonlinear behavior was investigated by
neglecting the influence of inertia and damping and the results
showed that two-saddle node bifurcation would occur under
certain conditions. Kamat et al. [32] analyzed parametrically
excited laminated composite joined conical–cylindrical shells. The
formulation was based on first-order shear deformation theory
(FSDT) and the effects of in-plane and rotary inertia were
considered. The influence of various parameters studied in the
investigation included orthotropy, cone angle, layup, combination
of different sections, side to thickness ratio, static load and

external pressure on the dynamic instability regions of cross-ply
laminates. The effect of inclusion of cutouts on the dynamic
instability behavior of composite curved panels was studied by
Sahu and Datta [33]. Nonlinear static and dynamic instability
analyses of spherical shells were carried out by Lee et al. [34],
using mixed finite element formulation. Ravi Kumar et al. [35]
studied buckling, vibration and dynamic instability of laminated
doubly curved panels subjected to uniaxial in-plane point and
patch tensile loadings by using the finite element method. Ravi
Kumar et al. [36] also studied the effect of circular cutouts on the
dynamic instability characteristics of laminated doubly curved
panels subjected to non-uniform tensile edge loading. Buckling
and dynamic stability analyses of stiffened laminated shell panels
were carried out by Patel et al. [37]. Sahu and Datta [38] provided
an extensive review of most of the recent researches done in the
field of dynamic instability characteristics of plates and shells in
conservative systems.

It is evident from the above review that several investigators
studied the dynamic instability behavior of laminated composite
shells with different efficiencies and accuracies. It is observed that
the dynamic instability behavior of cylindrical and spherical shells
was extensively investigated by researchers. To the best of the
authors’ knowledge, published works on the dynamic instability of
hypars and conoids are scarce. Also, the computational models
employed in the earlier works mainly deal with shells with two
radii of curvature 1/Rx and 1/Ry and do not account for the twist
curvature 1/Rxy, which is very much essential while analyzing
industrially important shells like hypar and conoid. From this, it is
evident that there is a need for carrying out research in the
development of new computational models to study the shells
having twist curvature. Therefore, in the present investigation, a
higher-order theory, proposed earlier by Kant and Khare [39] for
shells having two radii of curvature 1/Rx and 1/Ry is extended by
including the twist radius of curvature 1/Rxy and dynamic instability
behavior of industrially important hypar and conoid shells is
examined by using the extended higher-order formulation.

2. Mathematical formulation

Let us consider a laminated shell made of a finite number of
uniformly thick orthotropic layers (Fig. 1a), oriented arbitrarily
with respect to the shell co-ordinates (x,y,z). The co-ordinate
system (x,y,z) is chosen such that the plane x–y at z¼0 coincides
with the mid-plane of the shell. In order to approximate the
three-dimensional elasticity problem to a two-dimensional one,
the displacement components u(x,y,z), v(x,y,z) and w(x,y,z) at any
point in the shell space are expanded in Taylor’s series in terms of
the thickness co-ordinates. The elasticity solution indicates that
the transverse shear stresses vary parabolically through the
element thickness. This requires the use of a displacement field
in which the in-plane displacements are expanded as cubic
functions of the thickness co-ordinate. The displacement fields,
which satisfy the above criteria are assumed in the form as given
by Kant and Khare [39].

uðx,y,zÞ ¼ u0ðx,yÞþzyyþz2u�0ðx,yÞþz3y�yðx,yÞ

vðx,y,zÞ ¼ v0ðx,yÞ�zyxþz2v�0ðx,yÞ�z3y�xðx,yÞ

wðx,y,zÞ ¼w0 ð1Þ

where u, v and w are the displacements of a general point (x,y,z)
in an element of the laminate along x, y and z directions,
respectively. The parameters u0, v0, w0, yx and yy are the
displacements and rotations of the middle plane, while u�0, v�0, y�x
and y�y are the higher-order displacement parameters defined at
the mid-plane.
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Fig. 1. Shell geometries: (a) hypar (HYP) shell and (b) conoid (CON) shell.
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