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Static analysis of superelliptical clamped plates by Galerkin’s method
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Abstract

In this study, clamped superelliptical plates under uniformly distributed surface load are statically analyzed. Linearly elastic,

homogeneous, and isotropic material is considered. The classical thin plate model (Kirchhoff) is employed. The lack of contributions on

the static behavior of this sort of plate shapes is the fundamental motivation of the current study. Galerkin’s method is used to obtain

solutions. The method is conducted for polynomial series at powers ranging from 2 to 8 in order to get converging solutions. Maximum

deflections of the plates and mid-point moments are obtained and the results are arranged in tabular form. For purpose of

understanding, the behavior trend of the structure with respect to the parameters, some of the solutions are organized in graphical form.

The study is performed for a wide range of superelliptical plates. The results are also examined with respect to the parameters a/b ratios

and n, which are the plate aspect ratio and the superelliptical power, respectively.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates which are defined by shapes between an ellipse
and a rectangle have a wide range of use in engineering
applications. Although we do not have sufficient engineer-
ing data, the types of the superelliptical plates that
approach a rectangle with rounded corners are extensively
used as structural and machine elements [1]. The studies on
mechanical behavior of plates have been concentrated on
rectangular, circular, and elliptical plates which can be
considered as extreme cases of superelliptical plates [2–10].
Mohr [2] used a least-squares approach to obtain
polynomial solutions for the deflected shape of thin plates
in flexure. He worked on triangular and rectangular plates
with clamped and simply supported boundary conditions
and obtained solutions in good agreement with exact
values which are also presented in Ref. [2]. Zenkour [3]
presented a two-dimensional solution for bending analysis
of simply supported functionally graded ceramic–metal
rectangular sandwich plates. He obtained non-dimensional

stress solutions for plates with two different ceramic–metal
mixtures. The author obtained results for first-order, third-
order, and classical plate theories and also worked on a
sinusoidal shear deformation plate theory. The effect of
material distribution on the deflections and stresses was
examined. Muhammad and Singh [4] worked on a p-type
solution for bending of rectangular, circular, elliptic, and
skew plates. They used a first-order shear deformable plate
model and obtained solutions for both clamped and simply
supported plates. They also studied on plates having
openings and presented their results for different solution
levels and compared them with known exact values. Korol
[5] worked on development of a technique for the solution
of boundary value problems of the longitudinal transverse
bending of orthotropic circular plates resting on a linearly
elastic base. Recently, Paik [9] investigated the ultimate
shear strength reduction characteristics of dented steel
plates due to local impacts. In that study, a series of
elastic–plastic large deflection finite element analyses were
carried out for dented steel plates under edge shear loads,
varying the dent size, the dent location, the plate thickness
and the plate aspect ratio. Rectangular plates were
considered in that study.
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2. Basic assumptions and equations

The boundary shape equation of the superelliptical
plates can be represented by

x2n

a2n
þ

y2n

b2n
¼ 1, (1)

where n is the power of the super ellipse. The graphical
representation of the above boundary is given in Fig. 1.

The superelliptical powers, n, are chosen from 1 to 10.
For the entire study, b is kept constant as 1, and a is chosen
for 14 different numbers from 1 to 20 in order to obtain
results for various a/b aspect ratios.

The edges of the analyzed super ellipses are assumed to
be clamped. Therefore, the solution should satisfy the
following boundary conditions:

w ¼ 0 and
@w

@ni

¼ 0 (2)

at the plate edge, where ni is the outward normal of the
boundary, and w is the deflection function. In addition to
the geometrical boundary conditions, the kinematical
boundary conditions are also satisfied by the selected trial
functions. The trial functions are constructed from a
complete set of polynomials in such a way that

wðx; yÞ ¼
Xr

i

Xr

j

aij

x2n

a2n
þ

y2n

b2n
� 1

� �2

xiyj (3)

and i+jpr, so r is the order of the polynomial trial
function. Here, aij are the undetermined coefficients. The
existence of ((x2n/a2n)+(y2n/b2n)�1)2 in Eq. (3) guarantees
that every element of these trial functions satisfies both
geometrical and kinematical boundary conditions of the
problem. Knowing that the deflection function of the
chosen system is an even function, the elements of the trial
function which has odd powers of x or y are eliminated.

For example, the trial function for r ¼ 2 is

wðx; yÞ ¼
x2n

a2n
þ

y2n

b2n
� 1

� �2

� ða00x0y0

þ a02x0y2 þ a20x2y0Þ. ð4Þ

Galerkin’s method is used to obtain the solutions;
therefore, the partial differential equation of the uniformly
loaded plate (Eq. (5)) is directly used:

@4w

@x4
þ 2

@4w

@x2@y2
þ
@4w

@y4
¼

q0

D
, (5)

where q0 is the uniformly distributed surface load of the
plate and D is the bending rigidity of the plate which is

D ¼
Eh3

12ð1� n2Þ
. (6)

Here, E is Young’s modulus of the plate material, h is the
plate thickness, and n is the Poisson’s ratio of the plate
material. Eq. (5) can also be represented in terms of
biharmonic operator r4:

r4w�
q0

D
¼ 0. (7)

3. Relation between internal forces and displacements

From Hook’s law, the stress–strain relationships can be
obtained as

sx ¼
E

1� n2
ð�x þ n�yÞ, (8)

sy ¼
E

1� n2
ð�y þ n�xÞ. (9)

The strains and stresses of the plate can now be introduced:

�x ¼ �z
@2w

@x2
, (10)

�y ¼ �z
@2w

@y2
, (11)

sx ¼ �
Ez

1� n2
@2w

@x2
þ n

@2w

@y2

� �
, (12)

sy ¼ �
Ez

1� n2
@2w

@y2
þ n

@2w

@x2

� �
. (13)

The sum of these stress components on the plate cross
section produces the bending moments:

mx ¼

Z þðh=2Þ
�ðh=2Þ

sxzdz, (14)

my ¼

Z þðh=2Þ
�ðh=2Þ

syzdz, (15)
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Fig. 1. Superelliptical plates having the boundary equation (x2n/a2n)+

(y2n/a2n) ¼ 1.
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