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a b s t r a c t

Based on the trigonometric shear deformation theory for laminated beams, the differential governing

equations of symmetric laminated composite plates are derived. The differential governing equations

discretized by a meshless collocation method based on the inverse multiquadric radial basis function is

used to predict the free vibration behavior of symmetric laminated composite plates. Natural

frequencies are computed for various material parameters, geometry parameters of laminated plates,

and are compared with some available published results. The influence of grid pattern, modulus ratio,

and side-to-thickness ratio on natural frequencies is also investigated. Through numerical experiments,

the high numerical accuracy and the good convergence of the trigonometric shear deformation theory

discretized by the inverse multiquadric radial basis function for free vibration analysis of symmetric

laminated composite plates are demonstrated.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The first-order shear deformation theory (FSDT) [1] and the
higher-order shear deformation theory (HSDT) [2] for the analysis
of laminated composite plates have been the subject of intense
research. The FSDT and HSDT use a polynomial of z to represent
the nonlinear displacement field across the thickness. This
property of the displacement field leads to discontinuous
transverse shear stress. Trigonometric shear deformation theories
were applied to laminated composite beams by Arya [3]. These
theories use a sine term to represent the nonlinear displacement
field across the thickness. Transverse shear stress and strain are
represented by a cosine term. This model satisfies displacement
and transverse shear stress continuity at the interface. The zero
transverse shear stress boundary condition at the top and bottom
of the beam is also satisfied. Trigonometric shear deformation
theories were also applied to static analysis for cross-ply
symmetric laminated composite plates by Ferreira [4].

Free vibration analysis of laminated composite plates has been
previously studied by numerous authors. Khdeir and Reddy [5]
used the second-order shear deformation theory to analyze the
free vibration behavior of cross-ply and anti-symmetric angle-ply
laminated composite plates. Khdeir and Librescu [6] used the
higher-order shear deformation theory to analyze buckling and
free vibration of symmetric cross-ply elastics plates. The first-
order shear deformation theory was applied to free vibration

analysis of skew fibered-reinforced laminated plates by Wang [7].
Spline finite strips with the higher-order shear deformation
theory were applied to static and free vibration analysis of
laminated composite plates by Akhras and Li [8]. Ferreira [9]
analyzed the free vibration behavior of symmetric laminated
composite plates by the FSDT and radial basis functions (RBFs).
Liew [10] adopted the first-order shear deformation theory in
the moving least-squares differential quadrature procedure for
predicting the free vibration behavior of moderately thick
symmetric laminated composite plates. In their analysis, the
transverse deflection and two rotations of the laminate are
independently approximated with the moving least squares
(MLS) approximation.

The method for solving partial differential equations includes
the finite element method, the finite volume method or the finite
difference method. All these methods need a mesh for local
approximation. In recent years, a new method called the mesh-
less method has been developed [11–13], in which the problem
domain is discretized by a set of scattered nodes, and element
connectivity among the nodes is not required. The RBFs
method is a meshless method, which approximates the whole
solution of the partial differential equations using RBFs. In 1990,
Kansa [14,15] used the RBFs to solve partial differential equations.
The multiquadrics RBFs were applied to analyze the laminated
composite plates and functionally graded plates by Ferreira
[16–19].

This paper focuses for the first time on the free vibration
analysis of laminated composite plates by trigonometric
shear deformation theories of Arya [3] and inverse multiquadric
RBFs [20].
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2. Differential governing equations based on trigonometric
shear deformation theories

Based on the trigonometric shear deformation theory of Arya,
the displacement field of a symmetric laminated composite plate
with global thickness h can be defined as
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where w is the deflection, and fx and fy are the rotations of the
normal to the mid-plane about the y and x axes, respectively.

The strain–displacement relationships are given by

�xx

�yy

gxy

gyz

gxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

qu

qx
qv

qy

qu

qy
þ
qv

qx

qv

qz
þ
qw

qy

qu

qz
þ
qw

qx

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(2)

By substituting Eq. (1) into Eq. (2), the strains can be expressed as
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The stress–strain relationships in the global x–y–z coordinate
system can be written as
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where

Q̄11 ¼ Q11 cos4 yþ 2ðQ12 þ 2Q66Þsin2 y cos2 yþ Q22 sin4 y

Q̄12 ¼ ðQ11 þ Q22 � 4Q66Þsin2 y cos2 yþ Q12ðsin4 yþ cos4 yÞ

Q̄16 ¼ ðQ11 � Q12 � 2Q66Þ sin y cos3 yþ ðQ12 � Q22 þ 2Q66Þ sin y3 cos y

Q̄22 ¼ Q11 sin4 yþ 2ðQ12 þ 2Q66Þsin2 y cos2 yþ Q22 cos4 y

Q̄26 ¼ ðQ11 � Q12 � 2Q66Þ sin y3 cos yþ ðQ12 � Q22 þ 2Q66Þ sin y cos3 y

Q̄66 ¼ðQ11 þ Q22 � 2Q12 � 2Q66Þsin2 y cos2 yþ Q66ðsin4 yþ cos4 yÞ

Q̄44 ¼ Q44 cos2 yþ Q55 sin2 y

Q̄45 ¼ ðQ55 � Q44Þ cos y sin y

Q̄55 ¼ Q55 cos2 yþ Q44 sin2 y (6)

where y is the angle between the 1-axis and the x-axis, 1-axis
being the first principal material axis, and the reduced stiffness
components are given as
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where Eij, vij, and Gij are Young’s modulus, Poisson ration, and
shear modulus, respectively.

Euler–Lagrange equations, derived by using the principle of
virtual work, are
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where a and b denote the symbols x and y, and Ii are the mass
inertias defined as
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where r denotes the material density.
The differential governing equations can be obtained by

substituting Eqs. (9) and (10) into Eq. (8) as
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