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Abstract

The present paper deals with the weight minimization of tubular trusses subjected to multiple loads under size, stress and buckling constraints.

The applied optimization procedure is based on a virtual strain energy density approach developed by the first two authors, already tested in plane

and space truss structures. The key point of the method is the activation of at least one of the imposed displacement constraints. In case where such

limitations are absent, a dummy displacement constraint is introduced instead, which iteratively sustains corrections until convergence is achieved

within the desirable tolerance. The efficiency and practicability of the proposed method was tested in typical cases of tubular truss structures. For

reasons of comparison, the same cases were also optimized using Sequential Quadratic Programming (SQP), which is a powerful mathematical

programming optimization method. The results revealed that the proposed method performs very well in terms of convergence, of required

number of iterations and of optimum tracing, while the value of the introduced dummy displacement constraint has insignificant effect on the

optimization procedure.
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1. Introduction

Morris [1] gives a detailed review mainly in the field of

optimality criteria (OC) and of mathematical programming

(MP) methods until 1982. The fully stressed design (FSD) is

among the most simple and popular (OC) methods. Never-

theless, its inability to confront with displacement con-

straints, which are typical design limitations of modern

structures, in combination with the fact that not always does

it provide the optimum design for a stressed constrained

structure, detracts some of its value. Gellatly and Berke [2],

using optimality criteria, proposed a recursion expression for

the design of structures with displacement constraints. Based

on the sign of the virtual strain energy, they separated the

members in ‘active’ and ‘passive’. The active members have

a positive virtual strain energy value and are allowed to be

redesigned, while the passive members have a negative

virtual strain energy value, they are excluded from the

redesign process and their minimum size has to satisfy stress

or fabrication requirements. Research was also turned to

combining (OC) methods with other optimization procedures

[3–6]. In more details, Fleury and Geradin [3] combined

optimality criteria with pure mathematical programming, thus

allowing the convergence control of the optimization process.

Allwood and Chang [4] presented an optimality criteria

procedure based on the Newton–Raphson method, thus

improving the method of Taig and Kerr [5]. More

particularly, their procedure involved the iterative solution

of a non-linear system of equations, where the primary

variables were Lagrange multipliers. Patnaik et al. [6]

modified the Fully Utilized Design (FUD) method, which

is the extension of the traditional fully stress design (FSD)

method including displacement limitations in addition to

stress constraints. Viewing the literature [6–17], it seems that

there is still place for ideas with better application properties

in this field.

Towards this direction, the present paper proposes the use of

the iterative redesign formula presented in its initial form in

1995 [15] and in its updated expression in 2002 [16] for the

case of tubular pipes, where the two design variables sustain

geometrical limitations. The formula contains the product of

two independent multipliers. The first multiplier is defined as
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the ratio of the virtual strain energy density of a member over

the sum of the absolute values of the virtual strain energy

densities of all members, without the distinction between

active and passive members being made. The second multiplier

is defined as the ratio of the largest displacement violation

over the value of the corresponding displacement constraint.

After the application of the redesign formula, it is checked

whether the cross-section values violate the minimum

allowable ones. In the sequel, the stresses are checked and a

correction takes place only for the cross-section of those

members experiencing larger stress than the allowable. The

aforementioned redesign procedure assumes that at least

one displacement constraint is active. If this does not occur,

or if no displacement constraints are imposed, then the redesign

procedure is still applicable by introducing a dummy

constraint, as it is shown in the present work.

2. The proposed recursive formula

In numerous optimization methods, the principle of virtual

work plays a significant role in finding the optimal design. In

the case of a truss, the virtual work (left-hand side of Eq. (1)) is

the product of a virtual load Q applied to a node of the truss,

multiplied by the corresponding caused nodal displacement u

which is collinear to the force:
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Ai and Li are the area and the length, respectively, of the ith

truss member (bar), where F
Q
i and FP

i are the forces developed

in the i-th bar due to the application of the virtual load Q and of

the external loads P, respectively. Ei is the elastic modulus of

the material and n is the total number of the truss members.

When a virtual unit nodal load (QZ1) is applied, then Eq.

(1) takes the following form:
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The term ui has a two-fold interpretation, the former being

the virtual strain energy characterizing the i-th bar and the

latter being the contribution of the i-th bar to the displacement

u of the node, which the virtual unit load (QZ1) is applied to.

This information is valuable in case where a cross-section

redesign is desirable so that the nodal displacement u

approaches a limiting value u0. The corresponding virtual

strain energy per unit volume, or Virtual Energy Density

(VED), of the i-th bar is defined as follows:
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For a determinate truss, both forces FP
i and FQ

i are

independent of the cross-sectional area Ai, therefore it holds

that
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Differentiation of Eq. (4) gives:
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Division of Eqs. (4) and (5) by parts yields:
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Eq. (6) equates the rate of change of the cross-sectional area

of the i-th bar to the rate of change of the contribution that the

i-th bar has on the displacement of the node which the virtual

load is applied to. Using small finite variations Dui and DAi,

Eq. (6) can be written as follows
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or equivalently as:
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According to the proposed method, the following estimation

is used (for more details, see [16])
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and
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The combination of Eqs. (8)–(11) results in the following

redesign formula:
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In more details:

(a) If hiO0 (equivalently uiO0), then according to Eq. (2) the

i-th bar contributes in a positive way to the formation of

the displacement u. In this case, Eq. (12) suggests that if

the current displacement violates the constraint ((uKu0)/

u0O0), we can further decrease it by increasing the value

of the cross-section Ai. On the contrary, if the current

displacement is below the limit ((uKu0)/u0!0), we can

safely increase it by decreasing the value of the cross-

section Ai.

(b) If hi!0 (equivalently ui!0), then the i-th bar resists to

the increase of the total displacement. Therefore, if the
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