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a b s t r a c t

Shell-of-revolution frusta that possess symmetry in a plane perpendicular to the axis of revolution of

the shell are often encountered as parts of bigger shell assemblies, and these frusta can have a wide

variety of possible midsurface geometries such as spherical, ellipsoidal, toroidal, parabolic or hyperbolic.

This paper presents a new technique for the simplification of the derivation of the influence coefficients

for symmetric frusta of shells of revolution. The key strategy is the reduction of the number of

unknowns of the problem by decomposing a system of arbitrary shell-edge actions into symmetric and

anti-symmetric components conforming to the equatorial symmetry of the configuration.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Shell-of-revolution frusta that possess symmetry in a plane
perpendicular to the axis of revolution of the shell are often
encountered as parts of bigger shell assemblies. We will refer to the
plane of symmetry that is perpendicular to the axis of revolution of
the shell as the ‘‘equatorial plane’’. Such symmetric shell frusta can
have a variety of possible midsurface geometries such as spherical,
ellipsoidal, toroidal, parabolic or hyperbolic. Some examples are
illustrated in Fig. 1, where the axis of revolution of the shell is
denoted by R�R and the equatorial plane of symmetry is denoted
by E�E. Here the shell frustum may represent the thickened part of
an elevated liquid-containment shell in the zones around the
supports (which are usually located at the equator for such tanks),
or the edges of the frustum may simply be junctions of the frustum
to another shell of different geometry (i.e. discontinuities in slope
or radius of curvature of the shell meridian).

In analytical treatments of the axisymmetric bending of shells
of revolution, a flexibility-type approach is often employed, where
the membrane solution is taken as an approximate particular
integral of the full bending-theory equations, while a system of
axisymmetric bending moments and shearing forces applied upon
the shell edges is taken as the homogeneous solution [1]. The
latter will be referred to as ‘‘edge actions’’, and their effect upon
the shell as the ‘‘edge effect’’. This approximation is known to be
very accurate in the case of thin shells of radius-to-thickness ratio

r/t greater than 30 (many shells in civil and mechanical
engineering belong to this category), with errors being of the
order of only t2/r2in comparison with unity [2,3]. This allows the
stresses and deformations in the entire shell to be determined by
superimposing the effects of the membrane solution with those of
the edge actions.

In the flexibility analysis of thin axisymmetrically loaded shells
of revolution, the edge actions are initially regarded as unknowns
(or ‘‘redundants’’ in the terminology of the force method of
structural analysis), and appropriate compatibility conditions
must be imposed at the shell edges in order to allow the
evaluation of these redundants [1]. In this process, we require
the values of edge rotations and displacements associated with
the surface loading (these are readily given by the membrane
solution), as well as edge rotations and displacements associated
with an arbitrary set of edge actions.

Fig. 2(a) shows an arbitrary set of axisymmetric edge actions
applied upon the upper and lower edges of a symmetric shell-of-
revolution frustum: {M1, H1} at the upper edge, and {M2, H2} at the
lower edge. The actions {M1, M2} are bending moments per unit
length of the respective edge of the shell, while {H1, H2} represent
horizontal shearing forces per unit length of the shell edge
(assuming the axis of revolution of the shell R�R is vertical). Fig.
2(b) shows deformations arising at the shell edges as a result of
the applied edge actions: {V1, d1} at the upper edge, and {V2, d2} at
the lower edge. The deformations {V1, V2} are rotations of the shell
meridian (taken as positive when anticlockwise on the left of the
axis of revolution of the shell), while {d1, d2} are horizontal
displacements of the shell (taken as positive when away from the
axis of revolution of the shell).
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We will adopt the coordinate f to denote the meridional angle
measured from the upward direction of the axis of revolution of
the shell, to the normal to the shell midsurface at the point in
question (Fig. 2). The alternative coordinate c denotes the
meridional angle measured from the equatorial plane E�E to the
normal to the shell midsurface at the point in question. From
the diagrams, it is clear that the relationship c ¼ (p/2)�f holds.
The parameter co is simply the value of c corresponding to the
upper edge of the shell.

We may express the bending-related edge deformations in
terms of the edge actions causing them in the following
manner [1]:
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The Iij (i ¼ 1,y, 4; j ¼ 1,y, 4) are the influence coefficients
which, if known, enable the edge deformations caused by any
system of edge actions {M1, H1, M2, H2} to be fully evaluated. The
determination of influence coefficients for various shells has
received much attention in the past. For instance, Stern and Tsui
[4] have obtained such coefficients for thin spherical-shell frusta
on the basis of a practically exact solution for the axisymmetric
bending of the spherical shell, whereas Zingoni and Pavlovic [5]
have exploited an approximate but accurate solution for the
axisymmetric bending of non-shallow spherical shells to derive
influence coefficients for spherical-shell frusta. Both studies [4,5]
also establish criteria that enable the bending effects at one edge
of the spherical-shell frustum to be decoupled from those at the
other edge, permitting a simplification of the shell analysis.
However, the determination of influence coefficients for shells of
revolution of more complex geometry remains a computationally
challenging task, even if an exact mathematical solution for the
shell-bending problem is known for the shell geometry in
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Fig. 1. Symmetric shell-of-revolution frusta: (a) spherical; (b) ellipsoidal; (c) toroidal; (d) hyperboloidal; (e) paraboloidal.

Fig. 2. Actions and deformations at the edges of a symmetric shell-of-revolution frustum (axis of revolution assumed to be vertical): (a) bending moments {M1, M2} and

horizontal shearing forces {H1, H2}; (b) rotations {V1, V2} and horizontal displacements {d1, d2}.
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