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a b s t r a c t

The behaviour of thin-walled I-section tapered members is governed by the width–thickness ratio of the

plate elements along with the member slenderness and tapering ratios. The effect of this interaction has

been studied theoretically in this work. A nonlinear finite element model which allows for geometric

non-linearities is constructed for the study. Large number of members having different values of flange

and web width–thickness ratios along with different member lengths and tapering ratios were selected

to draw complete ultimate strength–slenderness ratio curves and to study the different modes of

failure. A series of curves were drawn for design purpose. Finally, an empirical equation to get the

ultimate axial capacity of tapered slender I-section members (using the whole section) is presented. The

equation alleviates the current complexity in the calculation of the effective width, providing more

flexible design procedure.

& 2009 Published by Elsevier Ltd.

1. Introduction

Current trends in steel construction are to use tapered sections
to minimize as far as possible the use of excess material, by
choosing the cross-sections to be as economic as possible leaving
by that the classical approach of using prismatic members. Also,
the use of thin-walled sections has been the point of interest
of many researchers in the last 50 years. While there are clear
advantages to be achieved in terms of lighter weight, the
combination of tapered sections and high plate slenderness leads
potentially to local instability with reduced section capacities in
compression and bending. Current codes of practice use the
effective width concept for studying thin-walled sections, where
parts of the sections that exhibit local buckling are eliminated
from the cross section. Also, few codes deal with tapered members
but is limited to compact and non-compact sections. Furthermore,
current design interaction curves for members in combined
compression and bending do not take into account the combined
effect of both tapering of the beam-column and the small
thickness of its section walls.

The authors will briefly classify previous research approaches
considering thin-walled columns, beams and, beam-columns as

well as tapered beam-columns. Generally, in thin-walled sections,
formulae used to calculate the effective width are derived
from the local buckling expressions of individual plates; this is
expressed by the local buckling coefficient K and the maximum
compressive stress Fn at the edges of plates. The drawback of this
method is that it neglects the interaction between the plate
elements forming the cross section when determining the
coefficient. Bulson [1] and Allen and Bulson [2] have made several
efforts to improve the plate bucking coefficient to account for this
interaction in case of I-sections. Furthermore, they neglect the
interaction between the width–thickness ratios when determin-
ing the actual stress distribution across the section which affects
the value of the maximum compressive stress Fn. In 1981, Hancock
[3,4] extended the finite strip method to include the nonlinear
response of imperfect plate strips under longitudinal compres-
sion. He calculated the effective flexural resistance of box and
I-sections under axial loads. He found that the effective section
method for predicting the interaction of local and overall buckling
is accurate for I-sectioned columns with very heavy webs, but
over-conservative for normal web geometry. Hancock proposed a
simple design method based on the Winter’s [5] effective width
formula. In 2002, Schafer [6], introduced the direct strength
method which determines the reduced strength of cold-formed
columns or beams such as channels, zed, rack, and hat sections.
The method uses the gross properties of the member to determine
its elastic buckling behaviour in the different modes (local,
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distortional, Euler). He used that information in a series of
ultimate strength curves to predicate the ultimate strength of
cold-formed columns/beams. In 2004, Salem et al. [7], worked
on establishing series of interaction design curves for slender I-
sections in compression using the gross properties and taking into
account the interaction of the width–thickness ratios of the plate
elements comprising the cross sections.

The need for steel members with non-uniform cross-sections
was used with the aim to minimize the total weight and
subsequently the cost of the structure. Many research attempts
were made to find out the behaviour of tapered members. Lee
et al. [8] and Boley [9] have established that for small tapering
angles (151 or less) the Bernoulli–Euler theory for beams yields
satisfactory results. This has resulted in simplified analyses that
have permitted the extension of design formulas for prismatic
members to tapered ones. Along with the analytical studies,
two test programs were carried out in recent years. The first
experimental program was conducted at Columbia University
under the direction of Butler [10]. In the Columbia test program,
tapered I-shaped beams and channel sections tapered in both the
web and flanges were tested as cantilever beam-columns. The
primary interest was the elastic stability of these beams and their
bracing requirements. The second experimental program under
the technical guidance of the SSRC–WRC joint task committee
began in 1966 by Lee and Ketter at the State University of New
York at Buffalo. The results of this series of tests were reported by
Prawel et al. [11]. The primary interest in the second set of tests
was the inelastic stability of tapered I-shaped beam-columns. Also
in this experimental study residual stresses in welded tapered
shapes were measured. The magnitude and distribution of the
residual stresses are very similar to those in welded built-up
prismatic members.

The aim of this work is to study the effect of the interaction
between flange and web width–thickness ratios along with
member slenderness and tapering ratios on the behaviour of
I-section columns fabricated from thin plates. Large number of
members having different values of flange and web width–thick-
ness ratios along with different member lengths and tapering
ratios where selected to draw complete ultimate strength–
slenderness ratio curves as well as to study the different modes
of failure.

2. Finite element model

2.1. Description of the model

A nonlinear finite element model was established using
ABAQUS finite element package to determine the ultimate
capacity of slender tapered compression members. The element
used is ‘‘S4’’ which is fully integrated, general purpose, finite-
membrane-strain shell element. Element type S4 is a 4-noded
element having six degrees of freedom per node. The material
used is mild steel with yield stress of 240 MPa. The material
stress–strain curve is assumed to be elastic–perfectly plastic
obeying von Mises yield criterion.

The Riks method was used to predict unstable, geometrically
nonlinear collapse of a structure and can be used for speed
convergence of ill-conditioned or snap-through problems that do
not exhibit instability. This approach provides solutions regardless
of whether the response is stable or unstable.

Sections with various flange width–thickness ratios, web
width–thickness ratios and tapering ratios are considered in this
study. The finite element model and the boundary conditions are
as shown in Fig. 1.

2.2. Modeling of geometric imperfections

Initial geometric imperfections are divided into local geometric
imperfections and global geometric imperfections. Local geo-
metric imperfections represent the local variations in the shape
of the steel plate components which form the cross section from
its ideal geometry. Local imperfections can be defined as a linear
superposition of buckling eigenmodes obtained from a previous
eigenvalue buckling analysis problem. The global geometric
imperfections represent the global geometric defects that may
be found along the member length such as bending, twisting, etc.

2.2.1. Overall geometric imperfections

Overall initial imperfections are considered by modeling the
member with a second-degree parabola along its whole length.
The maximum amplitude of overall imperfection at the member
mid-length and about the minor axis of the cross section is chosen
as L/1000 as shown in Fig. 2.

2.2.2. Local imperfections

Hancock [3,4], suggested that the distribution of local plate
imperfections may be assumed similar to the expected local
buckling shape of the plate. The critical buckling shape of axially
loaded member with slender I-section consists of a half-sine wave
in the transverse direction and series of half-sine waves in the
longitudinal direction. Several trials showed that, the numbers of
longitudinal half-sine waves are approximately equal to the length
of the column ‘‘L’’ divided by the height of the web ‘‘Hw’’ which is
similar to the local buckling pattern of uniaxial loaded plate with
length ‘‘L’’ and height ‘‘Hw’’.

For verification purposes, a slender I-section column with
length equal to 4500 mm is modeled for different initial local
imperfection values, do. For the cases where ‘‘do’’ ranges form
(Hw/1000) to (Hw/250), the ultimate axial loads are nearly equal.
For the cases where ‘‘do’’ varies between (Hw/100) and (Hw/50), the
ultimate axial load decreases gradually, which means that the
effect of local imperfection is clear and dominates the behaviour.
The maximum initial imperfection value used by Hancock was
10% of the plate thickness. Sivakumaran et al. [12] said that the
British steel design code suggests the use of the following formula
as an upper limit for the imperfection amplitude, ‘‘do’’, of
compression steel plates which is:
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where ‘‘t’’ is the thickness of the plate element, ‘‘w/t’’ is the
slenderness ratio, ‘‘E’’ and ‘‘Fy’’ are the material properties of the
plate. From the previous studies, the authors used an average ‘‘do’’
within the practical limits which is equal to (H2/400). For tapered
sections, all buckling analysis results showed that the most
probable section where web buckling is initiated is near the bigger
end named H2 (Refer to Section 3).

2.2.3. Modeling local and global imperfections in the finite element

model

In the first analysis run, an eigenvalue buckling analysis is
performed with (ABAQUS/Standard) on the ‘‘perfect’’ structure to
establish probable collapse modes and to verify that the mesh
discretizes those modes accurately. The perfect structure in our
case will be the one with overall imperfection already introduced,
see Figs. 3 and 4. Then the eigenmodes will be written in the
default global system to the results file as nodal data. The lowest
buckling modes are frequently assumed to provide the most
critical imperfections, so usually these are scaled and added to the
perfect geometry to create the perturbed mesh. The imperfection
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