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Abstract

This work is related to the bending problem of thick rectangular Levy plates. Series solution for the Mindlin (thick) plate model
is obtained and represented as a sum of the Kirchhoff (thin) plate model solution, the “shear terms” and the “boundary layer
terms”. Hard- and soft-simple supported, hard- and soft-clamped and free boundary conditions are considered. In order to detect plate
regions where Kirchhoff model is good enough, and plate regions where Mindlin model should be used, a model error indicator is
introduced. Several examples are presented, illustrating the difference between the Mindlin and the Kirchhoff results, the strengths of
boundary layers for different boundary conditions, accuracy of several possible model error indicators and dependence of results on plate

thickness.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The bending of plates has been modeled by different
theories, which may lead to different solutions, depending
on the model used. The most common plate models are the
Kirchhoff model and the Mindlin model. The latter is very
often referred to as the Reissner—Mindlin one, although the
Reissner and the Mindlin models are somewhat different;
see e.g. [1].

It is known that the Mindlin solution of the plate
problem is very sensitive to the boundary conditions in the
neighborhood of the boundary; the solution may vary
sharply in the edge zone. This is called plate boundary layer
or plate edge effect, and has been analyzed and discussed
by Arnold and Falk [2,3], Higgblad and Bathe [4] and
Babuska and Li [5]. The solution of the Kirchhoff model
has no boundary layer. Babuska and Li [5] showed that the
boundary layer is present in the solution of the three-
dimensional (3d) formulation. It therefore corresponds to
the physical phenomenon. Arnold and Falk [2,3] presented
a theory for a rigorous analysis of the boundary layer of
the Mindlin solution for plates with smooth boundary. The
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strengths of the boundary layers were found for different
boundary conditions for rotations and stress resultants.
They illustrated the theory by analyzing the exact solution
of a circular and semi-infinite plate with different support
conditions. Higgblad and Bathe [4] extended their work to
boundary layers near a corner and made comparison of
theoretical and numerical results by means of an accurate
high-order plate element. Babuska and Li [5] analyzed how
well the Mindlin model approximates the 3d formulation.
They showed that the quality of the Mindlin solution (with
respect to the 3d solution) in the neighborhood of the plate
boundary strongly depends on the type of the plate
boundary conditions.

The first aim of this work is to discuss the edge effects in
the Mindlin solution for rectangular plates with two
opposite edges hard-simply supported and the remaining
two edges arbitrarily supported (e.g. hard-simple sup-
ported, soft-simple supported, hard-clamped, soft-clamped
or free). Such plates are usually called Levy plates. We
derive analytical (series) Mindlin solution for Levy plates,
and further show that it can be represented as the sum of
the corresponding Kirchhoff solution, the “‘shear terms”
and the “boundary layer terms”. So obtained Mindlin
solution is then used to study and illustrate edge effects in
rectangular plates for different boundary conditions.
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We note that there are several ways to obtain closed or
approximate analytical solution for rectangular plates, see
e.g. [6] for a review on this topic or [7] for a series solution.
Here, we exploit an approach of Lee et al. [8], Reddy and
Wang [9] and Lim and Reddy [10], who derived algebraic
relationships between the solutions of Mindlin and
Kirchhoff plate models. In contrast with the above-
mentioned works we also consider soft-simply supported
and soft-clamped boundary conditions.

Mindlin-theory-based finite elements are very often used
for approximate (numerical) analysis of plates. They can
effectively approximate the “shear part” of the analytical
solution, but they typically have problems to detect the
“boundary layer part”. Adaptive finite element analysis is
needed to make the boundary layer effect visible, see e.g.
[11-13]. In conjunction with the mesh refinement algo-
rithm, a (mesh) discretization error indicator/estimator,
which is oriented towards capturing the boundary layer
effect, has to be used. We note, that the analytical Mindlin
solutions, presented in this paper, can be used to estimate
performance of any (mesh) discretization error indicator
related to the mesh of Mindlin-theory-based finite ele-
ments; see e.g. [14,15] for examples of discretization error
indicators.

The second aim of this work is related to the model
error indicator, which is another source of error in the
computational (numerical) plate model. It is far more
difficult to estimate than the discretization error, sce e.g.
[16,17]. Tt is related to the suitability of the mathematical
model chosen for the plate analysis. With the analytical
solutions for Kirchhoff and Mindlin models available, a
suitable model error indicator for the Kirchhoff model
can be suggested. We would like to have one that is
simple enough as well as sensitive enough to detect the
shear layers in plate as well as the edge effects. Having
this in mind, we suggest and mutually compare several
model error indicators, which have a potential to detect
plate regions where Kirchhoff model is fine enough and
plate regions where more refined Mindlin model should be
used.

The paper is organized as follows. In Section 2 we
present basic equations of Kirchhoff and Mindlin plate
models and algebraic relationship between those two
models. We further recall basic results of theoretical edge
effect analysis for Mindlin model and discuss several
possible model error indicators. In Section 3 the results of
Section 2 are used for the case of Levy plates. In Section 4
we present several illustrative examples. The conclusions
are drawn in Section 5.

2. Plate models

In this section we present basic equations of Kirchhoff
and Mindlin plate models and algebraic relationship
between them. We recall basic results of edge effect
analysis for Mindlin model and introduce several model
error indicators.

2.1. The Mindlin and the Kirchhoff plate models and their
relationship

Let us consider a plate of thickness 4, which mid-plane is
in the xy plane. We assume that any transverse loading on
the plate can be adequately represented by ¢ = ¢(x, y). The
three basic sets of equations of any structural model
(i.e. equilibrium, kinematic and constitutive) are for the
Mindlin bending plate model:
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Here Mﬁﬁ,M%,Mﬁg, Qﬁl, Qy are stress resultants, ¢y.¢,
are rotations of the fibers normal to the mid-plane (Fig. 1),
wM is deflection of the mid-plane in the z direction,
KL, Kk, 26 are bending strains (curvatures), p¥,y) are
transverse shear strains, D and D® are plate constants
defined as D = ER’/(12(1—v?), D*=«>Gh, G is shear
modulus G = E/(2(1 +v)), E is elastic modulus, v is
Poisson’s ration, x” is shear correction factor usually set
to 5/6 for elastic isotropic plates, and (o), = 9(o)/0a.
The superscript M relates a quantity with the Mindlin
model. Eqgs. (1)-(3) can be reorganized into three
coupled differential equations in terms of w, ¢., ¢, by
defining the moment sum M = (M} + M}))/(1 +v) =
D(¢.+ ¢,,), see (3) and (2), and by using the constitutive
and the kinematic equations in the equilibrium equations:
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where V2 = 8% /ox? + 0 /0y,

One can replace three coupled Equations (4) by a set of
two uncoupled differential equations in terms of w* and
(¢y, — ¢,.) as shown below. Note that expressions on the
right-hand side of Egs. (4), and (4); can be regarded as
“equilibrium shear forces™, and those on the left-hand side
as ““constitutive shear forces”. By using both types of shear
forces in the first equilibrium Equation (1); one gets the
following two equations:

VZMM =—q= vz((px,x + ¢y,y) = _qD_l (5)
and
D'(V*wM + MM D™ = —y. (6)
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