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Abstract

Some aspects of buckling behaviour of structural elements made of nonlinear materials with strain hardening, for which the

stress–strain law has no yield plateau (stainless steels, aluminium alloys and others) are discussed. Considering compressed bars and

plates made of materials with linear and nonlinear strain hardening, on the basis of tangent modulus theory and the deformation theory,

we show that there exists a ‘‘threshold’’ value of the hardening factor below which the hardening does not influence the limit load. But if

the hardening factor exceeds the threshold value then the hardening significantly increases the limit load and this increasing is not

properly accounted for in some worldwide design codes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the stress–strain relationships for
many contemporary materials (in particular, stainless
steels, high strength steels, aluminium alloys) are nonlinear
ones with continuous hardening (without a yield plateau).
In Fig. 1, the stress–strain curve for one of Russian
stainless steels (X18H9T) is presented in dimensionless
parameters (curve 1).

In the most design codes, such as Eurocode-3 [1], Polish
and Russian codes [2,3] and others each material is
characterized with ‘‘yield strength’’ fy (or ‘‘basic yield
strength’’ fyb), and Perry–Robertson approach is used for
buckling predictions. As a matter of fact, it means that
instead of a real s�e law the ideal elastic–plastic diagram
of the material is assumed (curve 2 in Fig. 1), and no
hardening is taken into account.

If the s�e law includes a pronounced yield plateau, i.e.,
if there is the physical yield stress sy, then yield strength fy

has clear sense: it equals to sy (or (0.8–0.9)sy). In this case
the replacement of the real s�e curve with the ideal
elastic–plastic law is natural and justified. But for materials

without a sharp yield point and yield plateau the basic yield
strength fy has not a distinct physical sense. Usually it is
assumed to be equal to 0.2% proof stress s0.2, but this
choice, of course, is arbitrary.
The difficulty that we meet in nonlinear materials can be

noted already in the case of the linear hardening (Fig. 2):
should one take yield strength fy equal to the proportion-
ality limit or to s0.2?
The replacement of the real stress–strain relationships

with the ideal elastic–plastic law is dictated by simplicity
requirements. However, the question arises whether such a
simplification is adequate for nonlinear materials without
the yield plateau and whether it does not result in a
systematic error in certain range of parameters of
structural elements.
The influence of material nonlinearity on the buckling

behaviour of metal structures was studied in a great
amount of works, most of which are well known. Here we
may refer, e.g., to review [4]. But in this paper we would
like to emphasize some aspects of the problem, which did
not draw enough attention in previous works. Considering
compressed bars and plates made of materials with linear
and nonlinear hardening, on the basis of the tangent
modulus theory and the deformation theory, we show that
in case of linear hardening there exists a ‘‘threshold’’ value
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of the hardening factor. Below this value the hardening
does not influence the limit load and so neglecting the
hardening is justified. But if the hardening is beyond the
threshold value then any choice of yield strength fy results
in a systematic error in certain slenderness range of the
member.

2. Bars under compression

2.1. Linear hardening: ideal bars

Consider first an ideal bar made of material with linear
hardening (a piece-linear stress–strain law)

s ¼ E�y þ Etð�� �yÞ ðs4syÞ, (1)

where Et is the tangent modulus, sy is the proportionality
limit, �y ¼ sy=E. It is convenient to introduce dimension-
less parameters, which have the order of 1:

s� ¼
s
E
103; �� ¼ � 103. (2)

In these parameters the law (1) takes the form (t ¼ Et=E

is the hardening factor)

s� ¼ ��y þ tð�� � ��yÞ ðs
�4s�yÞ. (3)

We consider here an ideal bar and so for buckling we
may use the tangent-modulus theory (generally such an

approach gives the low bound of theoretical predictions
and satisfactorily correlates with experimental data). The
critical stress is equal to

scr ¼ tse, (4)

where se is the critical stress for elastic bar. Let us rewrite
this formula, using the normalized stress and slenderness
parameters adopted in design codes:

w ¼
scr

sy

; l̄ ¼
l
l1

, (5)

where l1 ¼ pðE=syÞ
0:5. Then relationship (4) is reduced to

w ¼
t

l̄
2
. (6)

Formula (6) holds only if t=l̄
2
X1, otherwise

scr ¼ minðse;syÞ, so if t=l̄
2o1, then w ¼ 1 for l̄p1 and

w ¼ 1=l̄
2
for l̄41. Hence function w(t) for the case l̄p1 has

the form shown in Fig. 3 (for l̄ ¼ 0:7). If we consider s�e
laws with different values of the hardening factor t, the
critical stress remains constant and equals to sy in the t

range from 0 to a bound value tn ¼ l̄
2
. It means that there

exists an ‘‘insensibility zone’’ shown in Fig. 4; it is bounded

with arrows t ¼ 0 and t ¼ t� ¼ l̄
2
.

If s(e) curve passes inside this zone, the critical stress
equals to the yield stress sy (similarly to the ideal
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Fig. 2. The case of linear hardening.

Fig. 1. The stress–strain law for stainless steel X18H9T and the idealized

s�e law.

Fig. 3. The effect of hardening factor t on the normalized critical stress

for compressed bar.

Fig. 4. Zone of insensibility of the critical stress to the hardening factor.
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