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Available online 24 September 2007

Abstract

General ideas and problems of probability approach and its utilization in the verification of structural design procedures of

EUROCODES are mentioned. The paper is aimed at the probability study of the ultimate limit state of a steel compressed member

designed economically according to EUROCODE 3. The theoretical failure probability (reliability index) vs. ratio of permanent to

variable load action is calculated by means of the Monte Carlo simulation method. The misalignment of the failure probability according

to EN1990 is analysed. Initial imperfections are generally considered as random variables and random fields. The non-linear beam FEM

is used. The influence of initial curvature shape and size variability of the member axis on the variability of load-carrying capacity is

investigated. The probabilistic analysis is supplemented with the fuzzy analysis of the influence of uncertainties on the failure probability.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with the probabilistic verification of
reliability of steel bar structures designed according to the
EUROCODE standard. Design procedures of EURO-
CODE standards, utilized in dimensioning of steel mem-
bers, stems from the limit state methodology. The
reliability of design is secured by partial safety factors.

Unified European standards EUROCODE ensure a
satisfactory level of reliability provided that the required
corresponding quality of production of metallurgical
products in individual EU countries is met.

In the Czech Republic, material and geometric char-
acteristics of steel products are controlled both by
manufacturers and at independent scientific workplaces
[1]. The greatest attention is paid to the monitoring and
analysis of the random variable values of yield strength,
material strength and ductility. It has been proved by
means of comparison studies that statistical characteristics
of yield strength, material strength and ductility of Czech
and Austrian steel are in good concordance [2].

In stability problems, initial geometric imperfections of
member cross-section and axis have a great influence on the
load-carrying capacity of slender members under compres-
sion. With increasing member slenderness the influence of
the variability of yield strength on the variability of load-
carrying capacity decreases [3] and the influence of flexural
rigidity EI (the product of Young’s modulus E and the
second moment of area I), which prevents buckling,
increases [3]. The variability of load-carrying capacity of
the bar is the most sensitive to the variability of initial
imperfection of axial bar curvature with non-dimensional
slenderness l̄ ¼ 1:0 [3].
The paper is aimed at the probabilistic analysis of the

ultimate limit state of a compressed member of profile IPE
220 with l̄ ¼ 1:0. With aim at an accurate description of
the influence of initial curvature of strut axis on the failure
probability, size and shape imperfections of strut axis are
modelled utilizing random fields [4] (see Fig. 1). Computer-
based FEM modelling and simulation are required for the
stochastic analysis.
The problem involves both aleatory and epistemic

uncertainties. During structural design, an information
on statistical characteristics of eventual loading is absent.
Imprecision (fuzziness) of information on the random
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initial imperfections and their correlations presents a
further source of uncertainty.

Newer mathematical approaches, which extend or depart
from the probability theory, are available, e.g. in Refs.
[5,6]. In order to obtain realistic results from stochastic
inference, imprecision (fuzziness) of data has to be
modelled quantitatively. This is possible by applying the
fuzzy sets theory [7,8].

2. Initial curvature of the axis

In general, the axis of a real member is a curve; an ideally
straight member is practically never concerned. Let us
consider a long member with initial plane axial curvature
(see Fig. 2) with unit weight g acting at the cross-sectional
centroid, which is constant per unit length of curved axis.
Next let the main central axis xc of the curve about which
the second moment of area of the curved axis of the
member is minimal be sought.

An orthogonal coordinate system yc vs. xc is considered
(see Fig. 2). The curve axis is divided into n equidistant
members in the direction of axis xc, resulting in a random
sample of n members. Each member i ¼ 0, 1, y, n is
subjected to axial compressive loading passing through the
first and the last node of the strut. The force line determines
the local strut axis xi, which is at angle ai with respect to
axis xc.

Each ith member is subdivided into k adjacent equidi-
stant elements k+1 (see Fig. 1). The angle ai of the local
coordinate system yi vs. xi is dependent on the position of
the initial yci0 and final ycik node of the member and may be
determined from the relation

tanðaiÞ ¼
Dyi

Dxi

¼
ycik � yci0

xcik � xci0
. (1)

Coordinates of the jth node in the coordinate system yc
vs. xc are transformed into the local coordinate system yi

vs. xi according to the relations

yij ¼ ðycij � yci0Þ cosðaiÞ � xcij sinðaiÞ, (2)

xij ¼ ðycij � yci0Þ sinðaiÞ þ xcij cosðaiÞ. (3)

For Dyi5Dxi and (ycij�yci0)51 it holds approximately
that xijExij, xijExcij, which is a frequent case practically.
The initial deformation of the jth node in the coordinate

system yc vs. xc is a random variable, which will be denoted
as ycj. When the number of struts n is a sufficiently large
number it holds that the mean value mycj of random
variable ycj of the jth node is approximately zero:

mycj ¼
1

n

Xn

i¼1

ycij � 0 for j ¼ 0; 1; . . . ; k. (4)

The shape of initial curvature of the strut axis depicted in
Fig. 1 represents the ith random observation from n struts.
Let us denote the random deviation of the jth node in the
local coordinate system y vs. x as yj (see Fig. 3). It can be
illustrated (e.g. by Monte Carlo simulation) that the mean
value myj of random deviation yj is equal to zero:

myj ¼
1

n

Xn

i¼1

yij � 0 for j ¼ 0; 1; . . . ; k, (5)

where yij was evaluated according to Eq. (2). The shape
of the random curvature is given by the correlation of
variables yj amongst k�1 nodes with y0 ¼ yk ¼ 0. The
correlations amongst variables ycj are approximately the
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Fig. 1. Random field of strut axis curvature.

Fig. 2. Global and local coordinate system of axial curvature.

Fig. 3. Geometrical imperfections of strut axis curvature and cross-section dimensions.
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