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Abstract

The paper deals with dynamic buckling of thin-walled structures (plates and beam-columns with open cross-section) subjected to
compressive rectangular pulse loading. The local, global and interactive dynamic buckling was analysed. Author proposes the new
criterion for critical amplitude of pulse loading leading to stability loss. The proposed criterion is a modification of quasi-bifurcation
criterion formulated by Kleiber, Kotula and Saran. Results obtained using proposed criterion were compared with other well-known
criteria (Volmir (V) and Budiansky—Hutchinson (B—H) criterion).
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1. Introduction

Dynamic buckling of thin-walled structures subjected to
pulse compressive loading and the critical amplitude of pulse
loading leading to stability loss was considered. The dynamic
buckling occurs when the loading process is of intermediate
amplitude and the pulse duration is close to the period of
fundamental natural flexural vibrations (in range of milli-
seconds). In such case the effects of dumping can be
neglected [1]. It should be noted that dynamic stability loss
may occur only for structures with initial geometric
imperfections, therefore the dynamic bifurcation load does
not exist. For the ideal structures (without any geometrical
imperfection) the critical buckling amplitude of pulse loading
tends to infinity [2]. The dynamic buckling load should be
defined on the basis of the assumed buckling criterion.

Dynamic buckling of thin-walled structures has been
discussed in many works for more than 50 years [1-11]. In
the majority of studies numerous simplifications have been
made to allow in practice for an effective analysis of
stability of the thin-walled structure. Mathematical models
tend to aim at higher precision and closer approximation of
real structures, which enables one to analyse more and
more exactly the phenomena occurring during and after the
loss of dynamic stability. The precise mathematical criteria
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were formulated for structures having unstable postcritical
equilibrium path or having limit point [2,10]. But for the
structures having stable postbuckling equilibrium path
(thin plate, thin-walled beam-columns with minimal critical
load corresponding to local buckling) the precise mathe-
matical criterion was not defined.

In world literature a lot of criteria can be found. In the
1960s of the 20th century, Volmir (V) [11] proposed a
criterion for plates subjected to in-plane pulse loading.
Next criteria were formulated by Budiansky and Hutch-
inson (B-H) [2,4,6]. In 1987, Kleiber et al. [12] analysed
dynamic behaviour of rod structures subjected to pulse
loading (Heaviside’s function) and formulated quasi-
bifurcation criterion that allows to find critical amplitude
of pulse loading. In the end of 1990s Ari-Gur and
Simonetta [3] formulated four criteria—two of them are
collapse-type buckling criteria. The failure criterion was
proposed by Petry and Fahlbush [9], who suggest that for
structures with stable postbuckling equilibrium path the
B—H criterion is very restrict because it does not take into
account load carrying capacity of the structure.

Till now the most popular and easy to apply are criteria
defined by Volmir and B-H. Volmir [11] analysed a thin
plate subjected to in-plane compressive loading with
different pulse shape, and defined the following criterion:

Dynamic critical load corresponds to the amplitude of
pulse load (of constant duration) at which the maximum
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plate deflection is equal to some constant value k& (k-half
or one plate thickness).

In many publications, the dynamic buckling load is
determined on the basis of stability criterion by B-H
[2,4,6]. However, this criterion was formulated for shell
structures but it also can be used for the plate structures
[5,7-9]. B-H noticed that in some range of the amplitude
value, the deflection of structures grows more rapidly than
in other. B-H formulated the following criterion:

Dynamic stability loss occurs when the maximum
deflection grows rapidly with the small variation of the
load amplitude.

To find the critical value defining the dynamic buckling
first of all the dynamic response should be analysed. The
problem is investigated on the basis of the asymptotic
analytical-numerical method [13]. In order to obtain the
equations of plate, the non-linear theory of orthotropic
thin-walled plates has been modified in such a way that it
additionally accounts for all components of inertia forces.
The differential equations of motion have been obtained
from Hamilton’s Principle, taking into account Lagrange’s
description, full Green’s strain tensor for thin plates and
Kirchhoff’s stress tensor.

2. Solution method

The problem was solved using the proposed analytical-
numerical method [8] which allows to analyse the static
buckling, post buckling behaviour and dynamic response
for the thin-walled structure composed of plates made of
isotropic or orthotropic material.

The thin-walled prismatic columns of the length /
composed of rectangular plate segments interconnected
along longitudinal edges are considered. Analysed columns
were simply supported at loaded ends. The plates are
rectangular and can be isotropic or orthotropic with the
principal axes of orthotropy parallel to the plate edges
[8,14]. The material all the plates are made of is subjected
to Hooke’s law. It is assumed that the loaded edges remain
straight and parallel during loading. Additionally, it is
assumed that normal and shear forces disappear along the
unloaded edges.

For the ith plate component, the precise geometrical
relationships are assumed in order to enable the considera-
tion of both out-of-plane and in-plane bending of each
plate [8,14]:
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where u;, v;, w; are displacement components of the middle
surface of the ith plate in the x; y;, and z; directions,
correspondingly.

The differential equations of equilibrium obtained from
Hamilton’s Principle for a single plate can be written as
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Let us obtain the equations of motion of a compressed
plate assuming that the natural modes of vibration coincide
with the buckling modes (it is the case, in particular, for
simply supported plates). Let 1 is a load factor, U, (i=1,N)
are the linear buckling modes with the critical load factor
values 4; close to the minimal critical value A.;,. We
assume the following expansion of dynamic displacements
field (Koiter’s type expansion for the buckling problem—
see [13,14]):

U = (u,0,w) = WU + &G(OU; + G(OG(OU + ..., (©)

where &;=w,/h; is the amplitude of ith mode (normalized,
in given case, by the condition of equality of the maximal
deflection to the thickness of the first component plate /),
Uj; are the second order displacement fields, summation is
supposed on repeated indexes.

The static part (inertia forces were neglected) of
the system of the ordinary differential equilibrium equa-
tions (2), the first and second order approximations in the
xy plane was solved by the modified transition matrix
method. The state vector at the final edge based on the
state vector at the initial edge was found by numerical
integration of the differential equations (2) in transverse
direction using the Runge—Kutta formulaec by means of
the Godunov orthogonalization method [14,15]. The
above method allows to find non-linear postbuckling
coefficients: ag, a, s ajg; performed in equation
describing postbuckling equilibrium path [14]. For the
structure contains geometric imperfections U (only linear
initial imperfections determined by the shape of ith
buckling modes), where U = &U; then, similarly to the
Koiter’s theory for the buckling problem [13,14] the
potential energy corresponding to the equilibrium path
can be written as follows:
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