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Abstract

In the work the dynamic stability of laboratory model of the truck crane is considered. The results in the form of frequency curves for

changing the geometry of the system have been presented. Solution of the Mathieu equation enables one to determine the dynamic

stability regions of the system. It has been found that, for each of the studied examples, there exists such a rope length for which the

critical value of the coefficient a in the Mathieu equation is obtained. That means that for specified geometrical and load conditions, the

system may loose its dynamic stability (unless vibration damping is considered).

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A truck crane is one of the most complicated machines in
respect of dynamics. There are many works dealing with
research into the dynamics of truck cranes and their
telescopic booms. In 2005, a new monograph on the
modelling of and research into the dynamics of a self-
propelled truck crane [1] was published. A model of the
truck crane, which takes into account all possible control for
the real system operation, is presented in [2]. In [3] analysis
of free and parametrical vibrations of the system of changes
in crane radius of a DUT 0203 crane were carried out, while
in [4]—an analysis of the free vibrations of a laboratory
model of truck crane is conducted. The influence of flexible
soil foundation on the dynamic stability of a crane boom
during its rotation is considered in [5]. Research into the
stability of a truck crane during the control of different
operational motions is performed in [6]. In [7], based on
flexible multibody theory, the complete dynamic simulation
for crane rotating is studied. In [8], the dynamic analysis of
the truck crane model during an arbitrary sequence of
operational motions, such as: lifting, lowering, rotation or
changes in the crane radius is presented.

The considerations, presented in this paper, take into
account analysis of the dynamic stability of a laboratory

model of a truck crane. The vibrations of the system in the
boom’s lifting plane are analyzed. The possible existence of
parametric resonance in the system is investigated. It can
be stated that at a determined geometry of the system (the
length of the boom and its inclination angle) there are such
rope lengths for which the critical value of coefficient a in
the Mathieu equation is obtained. This means that a system
fulfilling determined geometrical and load conditions
(without taking into consideration the damping) may lose
dynamic stability.

2. Physical model of the system

The stand [9], for testing the dynamics of a truck crane,
is a laboratory model of a real truck crane made on a scale
1:5. All operational motions of the model are controlled by
using of hydraulic systems.
The following features were taken into account in the

physical model of the tested system:

(a) the reacting force of the load hanging on a rope, lifted
or stopped during lowering, on the tested system (the
force in the form PðtÞ ¼ P0 þ S cos nt),

(b) actual geometry of the system defined by a and d
angles,

(c) equivalent masses (Mzw, Mr1 and Mr2Þ at the support
point of boom by the hydraulic cylinder and at the
support point of the basic element of the boom
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(considering: mass of the boom, mass of the rotating
frame, mass of the piston rod of the supported
hydraulic cylinder, mass of counterweight). The mass
of the head of boom Mz has been also considered.

(d) equivalent rigidity of the boom,
(e) elasticity: of hydraulic cylinder for changes in the crane

radius ks, of rotating platform kr1, of model of chassis
frame kzp1.

The physical model of the tested system is presented in Fig. 1.
During formulation of the mathematical model the

following simplifications were assumed:

(a) beams of the system are Bernoulli–Euler’s beams,
(b) the model of the chassis frame of truck crane does not

consider its mass,
(c) a spring modelling the rigidity of chassis frame is applied

at the fixing point of the boom in rotating frame.

3. Mathematical model

The mathematical model is formulated by means of
Hamilton’s principle [10] and as a result the equations of
motion and natural boundary conditions are obtained. The
equations of motion take the following form:

EiJi

q4W iðxi; tÞ

qx4
i

þ PiðtÞ
q2W iðxi; tÞ

qx2
i

þ riAi

q2W iðxi; tÞ

qt2
¼ 0,

i ¼ 1; 2, ð1Þ

where EiJi the flexural rigidity of ith beam, ri the material
density of ith beam, Ai the cross-section of ith beam,
PiðtÞ ¼ Pi0 þ S cos nt.

Mr2
q2Y ðtÞ
qt2

þ
kr2

2
Y ðtÞ � kz1ðW 2ð0; tÞ cos a� Y ðtÞÞ ¼ 0,

(2)
where, kz1 ¼ ksðkr2=2Þ=ks þ ðkr2=2Þ,

while the boundary conditions (at S ¼ 0) are
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Substitution of

W iðxi; tÞ ¼ wiðxiÞe
jot (11)

and

Y ðtÞ ¼ yejot (12)

into Eqs. (1)–(2) and into conditions (3,4)–(10) leads to (at
S ¼ 0)
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IV
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II
i ðxiÞ � riAio2wiðxiÞ ¼ 0 (13)

and
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2
y� kz1ðw2ð0Þ cos a� yÞ ¼ 0, (14)

together with the boundary conditions

E1J1w
III
1 ð0Þ � kr1w1ð0Þ cos aþMr1o2w1ð0Þ ¼ 0,

wII
1 ð0Þ ¼ 0, ð15; 16Þ

w1ðl1Þ ¼ w2ð0Þ; wI
1ðl1Þ ¼ wI

2ð0Þ; wII
2 ðl2Þ ¼ 0, (17219)

E1J1w
II
1 ðl1Þ ¼ E2J2w

II
2 ð0Þ; E2J2w

III
2 ðl2Þ

þ P20wI
2ðl2Þ þMzo2w2ðl2Þ ¼ �Pp0, ð20; 21Þ

E1J1w
III
1 ðl1Þ þ P10wI

1ðl1Þ � E2J2wIII
2 ð0Þ

� kz1ðw2ð0Þ cos a� yÞ þMzo2w2ð0Þ ¼ 0 ð22Þ

Constant y, present in condition (22), was determined from
Eq. (14).
The solution of Eq. (13) is the following function:

wiðxiÞ ¼ C1 sinhðlixiÞ þ C2 coshðlixiÞ þ C3 sinðl̄ixiÞ

þ C4 cosðl̄ixiÞ, ð23Þ

where, C1–C4—constants, li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðb2i =2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4i =4Þ þ gi

qr
,

li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i =2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4i =4þ gi

qr
, where, b2i ¼ Pi0=EiJi; gi ¼

riAio2=EiJi.
The solution of the boundary condition leads to a

homogenous system of eight equations in relation to
unknown constants Cn ðn ¼ 1; 2; 3; 4Þ. The above system
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Fig. 1. The physical model of the tested system.

W. Sochacki / Thin-Walled Structures 45 (2007) 927–930928



Download English Version:

https://daneshyari.com/en/article/310136

Download Persian Version:

https://daneshyari.com/article/310136

Daneshyari.com

https://daneshyari.com/en/article/310136
https://daneshyari.com/article/310136
https://daneshyari.com

