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Received 10 March 2006; received in revised form 11 June 2007; accepted 11 June 2007

Available online 25 October 2007

Abstract

The main goal of this paper is a solution of the problem of buckling and deflection. A circular porous plate with simply supported edge

under radial uniform compression and uniformly distributed load (pressure) is considered. Mechanical properties of the isotropic porous

material vary across the thickness of the plate. Middle plane of the plate is its symmetry plane. A field of displacements (geometric model

of nonlinear hypothesis) is described. The principle of stationarity of the total potential energy allowed to get a system of differential

equations that govern the plate stability. A critical load and a deflection are determined. The results obtained for porous plates are

compared to homogeneous circular plates.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Problem of deflection and buckling of the plates is
described in many works and monographs. Some of
them deal with the classical (Kirchhoff) theory which is
not adequate in providing accurate buckling. This is
due to the effect of transverse shear strains. Shear
deformation theories provide accurate solutions compared
to the classical theory. During the last several years this
problem has been developed by many authors. The
simplest, widely used approach for modelling plates
made of non-homogeneous material is using Kirchhof-
f–Love’a hypothesis for describing the displacement field
and taking into account modified forms of stiffness
coefficients. For example, this way of modelling was
used by Ambartsumian [1] in his monographs. The first
shear deformation theory is presented by Vinson [2]. Later,
many hypotheses, which include shearing, have been
formulated. One of the monograph devoted to this
problem is the work of Wang et al. [3], where authors
presented not only their own solutions but also a review of

previous attempts to model beams and plates. A compar-
ison of theories used for modelling compressed and bent
multilayered composite plates is presented in Chattopad-
hyay [4]. Banhart [5] provided a comprehensive description
of various manufacturing processes of metal foams and
porous metallic structures. Structural and functional
applications to various industrial sectors are discussed.
Instead, porous plates and beams with varying properties
were described by Malinowski and Magnucki [6],
Magnucki and Stasiewicz [7,8] and Magnucki [9] where
also a nonlinear hypothesis was assumed. Porous-cellular
materials exist in the nature, for example, structure of
bones cross-section. Taking into account these structures,
many searchers describe and manufacture similar struc-
tures. Suresh and Mortensen [10] presented detailed
technology of these graded materials and its mechanical
properties.
Presented circular porous plate is a generalization of

sandwich structure. These circular plates, for example as flat
baffle plate are used in water filter or horizontal cylindrical
pressure vessels. Flat baffle plates of vessels are loaded by
pressure and radial compression. So this paper is concerned
with the problem of deflection and buckling of the plate.

ARTICLE IN PRESS

www.elsevier.com/locate/tws

0263-8231/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tws.2007.06.006

E-mail address: emagnucka@poczta.onet.pl

www.elsevier.com/locate/tws
dx.doi.org/10.1016/j.tws.2007.06.006
mailto:emagnucka@poczta.onet.pl


2. Displacements of a porous plate

This work is divided into two parts. Both of them are
concerned with a circular porous plate with simply
supported edge. But in the first one, the plate under
uniformly distributed load is described and in the second
one, the plate under radial uniform compression. Mechan-
ical properties of the material vary through the thickness of
the plate. Minimal value of Young’s modulus occurs in the
middle surface of the plate and maximal values at its top
and bottom surfaces. For such a case, the Euler–Bernoulli
or Timoshenko plate theories do not correctly determine
displacements of the plate’s cross-section. Wang [3]
discussed in details the effect of non-dilatational strain of
middle layers on bending of plates subject to various load
cases. A porous plate (Fig. 1) is a generalized sandwich
plate. The material is of continuous mechanical properties.
The top and the bottom plate surfaces are made of non-
porous material, while maximal porosity of the material
occurs in the middle surfaces of the plate. The degree of
porosity varies in normal direction. This plate is described
in polar (cylindrical) coordinate system with the z-axis in
the normal direction. The moduli of elasticities and mass
density vary continuously too, as follows:

EðzÞ ¼ E1½1� e0 cosðpzÞ�; GðzÞ ¼ G1½1� e0 cosðpzÞ�,

RðzÞ ¼ R1½1� em cosðpzÞ�, ð1Þ

where, e0 is the coefficient of plate porosity,
e0 ¼ 1� E0=E1, E0, E1 the Young’s moduli at z ¼ 0 and
z ¼ �h=2, respectively, G0, G1 the shear moduli for z ¼ 0
and z ¼ �h=2, respectively, Gj the relationship between the
moduli of elasticy for j ¼ 0; 1, Gj ¼ Ej=½2ð1þ nÞ�, n the
Poisson’s ratio (constant for the entire plate), em the
dimensionless parameter of mass density, em ¼ 1� R0=R1,
R0, R1 the mass density for z ¼ 0 and z ¼ �h=2, respec-
tively, z the dimensionless coordinate, z ¼ z=h, h the
thickness of the plate.

Choi and Lakes [11] presented mechanical properties for
porous materials. Taking into account the results of
investigations of this paper the relation between dimen-
sionless parameter of mass density em ¼ 1� R0=R1 and
dimensionless parameter of the porosity of the metal foam
e0 is defined as follows: em ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e0
p

.

The physical model of deformation of a plane cross-
section of the plate (the nonlinear hypothesis) is shown in
Fig. 2. The cross-section, being initially planar surface,
becomes curved after the deformation. The surface
perpendicularly intersects the top and the bottom surfaces
of the plate. This geometric model is analogous to the
broken-line hypothesis applied to three-layered structures.
A field of displacements in any cross-section is assumed in
the following form:

uðr; zÞ ¼ � h z
dw

dr
�

1

p
½c1ðrÞ sinðpzÞ

�
þ c2ðrÞ sinð2pzÞcos

2ðpzÞ�
�
,

wðr; zÞ ¼ wðr; 0Þ ¼ wðrÞ, (2)

where uðr; zÞ is the longitudinal displacement along the r-
axis, wðrÞ the deflection (displacement along the z-axis),
c1ðrÞ, c2ðrÞ the dimensionless functions of displacements.
The strains are linear and components of the strain field

describing the geometric relationships are defined as
follows:

er ¼
qu
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¼ � h z

d2w

dr2
�
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Fig. 1. Scheme of porous plate.
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Fig. 2. Scheme of a deformation of a plane cross-section of the beam—the

nonlinear hypothesis.
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