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Abstract

In this paper, the advanced analysis of 3D steel frames accounting for lateral-torsional buckling is presented. This analysis accounts for

material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with

conventional advanced analysis, which do not consider lateral-torsional buckling, is overcome. An efficient way of assessing steel frame

behavior including gradual yielding associated with residual stresses and flexure and second-order effect is presented. A case study shows

that lateral-torsional buckling is a very crucial element to be considered in advanced analysis. The proposed analysis is shown to be an

efficient and reliable tool ready to be implemented into design practice.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In current engineering practice, the interaction between a
structural system and its component members is repre-
sented by the effective length factor. The effective length
method generally provides a good design of framed
structures. However, despite its popular use as a basis for
design, the approach has major limitations. First, it does
not give an accurate indication of the factor against failure
because it does not consider the interaction of strength and
stability between the member and structural system in a
direct manner. It is well-recognized that the actual failure
mode of the structural system often does not have any
resemblance whatsoever to the elastic buckling mode of the
structural system, which is the basis for the determination
of the effective length factor, K. The second and perhaps
the most serious limitation is probably the rationale of the
current two-stage process in design: elastic analysis is used
to determine the forces acting on each member of a
structural system, whereas inelastic analysis is used to

determine the strength of each member treated as an
isolated member. There is no verification of the compat-
ibility between the isolated member and the member as
part of a frame. The individual member strength equations
as specified in specifications are unconcerned with system
compatibility. As a result, there is no explicit guarantee
that all members will sustain their design loads under the
geometric configuration imposed by the framework.
In order to overcome the difficulties of the conventional

approach, advanced analysis should be directly performed.
With the current available computing technology with
advancement in computer hardware and software, it is
feasible to employ second-order plastic-hinge analysis
techniques for direct frame design. Most of the second-
order plastic analyses can be categorized into one of the
two types: (1) Plastic-zone; or (2) Plastic-hinge based on
the degree of refinements used to represent yielding. The
plastic-zone method uses the highest refinements while the
elastic–plastic hinge method allows for significant simpli-
fications. The typical load–displacements of the plastic
analyses are illustrated in Fig. 1. One of the second-order
plastic-hinge analyses called the ‘‘plastic-zone method’’
discretizes framed members into several finite elements.
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Also the cross-section of each finite element is further
subdivided into many fibers [1–3]. Although the plastic-
zone solution is known as an ‘‘exact solution’’, it is yet to
be used for practical design purposes. The applicability of
the method is limited by its complexity requiring intensive
computational time and cost. The real challenge in our
endeavor is to make this type of analysis competitive in
present construction engineering practices. A more simple
and efficient way to represent inelasticity in frames is the
second-order plastic-hinge method. Until now, several
second-order plastic-hinge analyses for space structures
were developed by Prakash and Powell [4], Liew et al. [5],
and Kim et al. [6], among others. The benefit of the second-
order plastic-hinge analyses is that they are efficient and
sufficiently accurate for the assessment of strength and
stability of structural systems and their component
members. But these conventional 3D second-order plas-
tic-hinge analyses cannot consider lateral-torsional buck-
ling. Therefore, advanced analysis needs to consider that
effect to enhance its capacity in predicting the behavior of
structure accurately.

Early attempts to study the behavior of thin-walled
structures include Bleich [7], Barsoum and Gallagher [8],
Trahair and Kitipornchai [9], and Allen and Bulson [10].
But these studies focused on the numerical methods that
permitted to treat only linear elastic lateral-torsional
buckling. After that, geometric nonlinear elastic studies
about thin-walled element considering lateral-torsional
buckling were conducted by Bazant and El Nimeiri [11],
Yang and McGuire [12], Chan and Kitipornchai [13],
Conci and Gattass [14], Chen and Blandford [15], and
Kwak et al. [16]. Nonlinear inelastic analyses of lateral-

torsional buckling were performed by Pi and Trahair [17],
Gruttmann et al. [18], Battini and Pacoste [19]. However,
the drawback of these methods is that they must use many
elements to obtain the accurate result of complex
structures. Recently, Kim et al. [20] developed a nonlinear
analysis method that can consider lateral-torsional buck-
ling effect. But this method cannot predict the real
behavior of member accurately because it only considered
lateral-torsional buckling strength using AISC-LRFD
equation.
The purpose of this paper is to propose a practical

advanced analysis method that can conduct nonlinear
inelastic analysis considering lateral-torsional buckling.
The stability functions and the refined plastic-hinge
approach are reasonably applied into the beam–column
formulation to take the advantage of computational
efficiency. The local buckling effects are ignored. The
shear, torsional, and warping effects on the cross-sectional
plastic strength are not considered.

2. Stiffness matrix formulation

2.1. Virtual work equation

In the conventional beam–column approach, some
coupling terms between the flexural and torsional displace-
ments are excluded due to the simple expansion from 2D
element to 3D element, so the lateral-torsional buckling
cannot be predicted there. To overcome this obstacle, a
virtual work equation including lateral torsional buckling
effect is used. The linearized form of incremental virtual
work equation of beam–column element having doubly
symmetric cross-section with 14 degrees-of-freedom may be
expressed as [21]
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in which E is the modulus of elasticity; G is the shear
modulus; A and L are the area and length of element; Iy

and Iz are the moment of inertia with respect to y and z

axes; Co is the warping constant; J is the torsional
constant; K̄ ¼ F xBðIy þ IzÞ

�
A is the Wagner coefficient;

and {f} and {u} are element force and displacement vectors.
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Fig. 1. Load–displacement of plastic analyses.
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