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Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
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Abstract

This paper studies the buckling behaviour of simply supported square plates, which have weakening or strengthening bands. The

weakening/strengthening bands are equally spaced and their thickness is either decreased or increased. The analysis assumes that the stress state in

the plate before and during the buckling process remains in the elastic range. Two cases of plate loading are studied, one with compressive forces

and one with tangential forces. The buckling coefficients are calculated for different numbers and thicknesses of strengthening/weakening bands.

The thickness of strengthening/weakening bands and the thickness of the remaining plate is varied so that the volume/weight of the plate remains

constant. In one case it is found that the buckling load at constant weight of the plate can be increased by 118% if an optimal ratio of the thickness

of strengthening bands and the thickness of the remaining plate is used.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The paper treats elastic stability of homogeneous square

plates, which are strengthened with equally spaced bands of

increased plate thickness, tOh, or weakened if the plate

thickness of these bands is decreased, t!h (see Fig. 1). The

plates are simply supported along all four edges. Two different

cases are considered. In the first case the two edges, parallel to

the y-axis, are loaded by an external uniformly distributed

compressive in-plane force per unit lengthNx (Fig. 1(a)) and the

width of the strengthening/weakening bands is a/11. The

direction of strengthening/weakening bands is parallel to the

x-axis [5],[7]. In the second case all four edges are loaded with

uniformly distributed tangential in-plane forces per unit length

NxyZNyx (Fig. 1(b)) and the width of the strengthening/

weakening bands is a
ffiffiffi
2

p
=11. The direction of strengthening/

weakening bands in this case is parallel to the direction yZx [6].

The aim of this paper is to study the influence of

strengthening/weakening bands on the buckling load.

Additionally, considering the condition of constant volume of

the plate, the existence of an optimal t/h ratio at a given number

of strengthening/weakening bands m, which maximizes the

buckling load will be shown.

2. Solution of the buckling problem

The initial elastic stability of the plate with strengthening

bands is analysed using the finite element method (FEM). Non-

conformal triangular elements with nine degrees of freedom are

adopted. It is known from [1] that for this element the

approximate solution converges towards the exact one, if the

finite element mesh is generated by means of three sets of

equally spaced lines (see Fig. 2). In the study by Rubeša [2] a

Fortran code, which used the described element, was presented.

By modeling only one quarter of the plate, the code was used to

solve some examples of axi-symmetric buckling with

maximum 36 elements. In our case the problem is more

demanding since axi-symmetric as well as asymmetric

buckling modes are considered. The use of FEM for initial

stability computations yields a generalised eigenvalue problem

ðAClBÞqZ 0; (1)

where A is the global stiffness matrix used in linear theory of

thin plates, B is the global matrix of geometric stiffness and q is

the vector of node displacements and rotations. l is the

eigenvalue of the upper homogeneous system used for

calculation of the buckling coefficient k and the buckling

mode (eigenvector q). The matrix A is symmetric and

positively definite and, if the plate is stably supported, also

Thin-Walled Structures 44 (2006) 334–343

www.elsevier.com/locate/tws

0263-8231/$ - see front matter q 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tws.2006.03.002

* Corresponding author. Tel.: C386 1 4771 603; fax: C386 1 2518 567.

E-mail addresses: joze.petrisic@fs.uni-lj.si (J. Petrišič), franc.kosel@fs.
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non-singular. Using some matrix manipulations a usual

eigenvalue problem can be obtained

ðAK1BKuIÞqZ 0; (2)

where I is the unit matrix and uZKlK1. Since A is symmetric

and positively definite, it is possible to perform a Cholesky

decomposition [3] where AZL$LT being L the lower

triangular matrix. By multiplying Eq. (2) by LK1 from the

left side a new equation is obtained

ðLK1BLKTKuIÞLTqZ 0: (3)

Introducing a new matrix CZLK1BLKT and vector

yZLTq the eigenvalue problem can be rewritten as

ðCKuIÞyZ 0: (4)

For the solution of the initial stability problem, which is

obtained by solving the eigenvalue problem Eqs. (2) or (4),

only the maximum eigenvalue and eigenvector are needed and

the power method [3] was used to calculate the solution.

Assuming that the solution of the eigenvalue problem requires

approximately the same number of computations as the Gauss

method of solution of a linear system of equations, and on the

basis of the round-up error effect on the precision of the

solution, it is unreal to expect that at usual (single) precision of

computing, the results were precise at any digit at all [3].

We solved the eigenvalue problem using single precision

computation in two ways, firstly by solving Eq. (2) and

secondly by solving Eq. (4). As expected, the results were

different and we concluded that in terms of precision none of

the methods had advantage. On the other hand, when using

double precision computation, both methods gave equal results

for the first eight digits. From this, we can conclude that the

deviation of the calculated values from available analytical

solutions is a result of insufficient finite element discretisation

of the plate.

Considering the number of computing operations, the

advantage is given to the conversion of the generalized

eigenvalue problem into the usual eigenvalue problem by

means of Cholesky decomposition of the matrix A, Eq. (4). A

different conclusion could perhaps be made, if the special

structure of both global stiffness matrices, where both have

most elements equal to zero, was considered.

3. Problem formulation

For a reference square plate with constant thickness h0 and

edge length a, the buckling stress can be written

scr Z
Ncr

h0
Z k

p2E

12ð1Kn2Þ

h0
a

� �2

; (5)

Fig. 1. Studied cases: (a) compressive forces Nx; (b) tangential forces Nxy.

Fig. 2. Finite element model of the plate.
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