The USA Multicenter Prehosptial Hemoglobin-based Oxygen Carrier Resuscitation Trial: Scientific Rationale, Study Design, and Results

Ernest E. Moore, мD^{a,*}, Jeffrey L. Johnson, мD^a, Frederick A. Moore, мD^b, Hunter B. Moore, вA^c

KEYWORDS

- Hemoglobin-based oxygen carrier Blood substitute
- Prehospital resuscitation Hemorrhagic shock Trauma

The current generation of blood substitutes tested in clinical trials are red blood cell (RBC) substitutes; that is, they are designed primarily to transport oxygen. The products now being used in advanced-phase clinical trials are derived from hemoglobin (Hb) and are thus often referred to as Hb-based oxygen carriers (HBOCs). The potential benefits of HBOCs are well known (**Box 1**). The objectives of this overview are to provide the scientific background and rationale for the study design of the USA Multicenter Prehospital HBOC Resuscitation Trial and to present the results and discuss clinical implications.

^c University of Vermont School of Medicine, Burlington, VT, USA

Crit Care Clin 25 (2009) 325–356 doi:10.1016/j.ccc.2009.01.002 0749-0704/09/\$ – see front matter © 2009 Published by Elsevier Inc.

criticalcare.theclinics.com

This article has contains data from the following references: **26–28**, **45**, **47–49**, **52**, **59**, **and 74**. Supported in part by Northfield Laboratories, Inc. and National Institutes of Health Grants P50GM49222, T32GM08315, and U54GM62119.

^a Department of Surgery, Denver Health Medical Center, University of Colorado Health Sciences Center, 777 Bannock Street, Denver, CO 80204, USA

^b Department of Surgery, Methodist Hospital and Weill-Cornell University, Houston, TX, USA

^{*} Corresponding author.

E-mail address: ernest.moore@dhha.org (E.E. Moore).

Box 1 Potential clinical benefits of hemoglobin-based oxygen carriers in trauma care	
Availability	
Abundant supply	
Universally compatible	
Prolonged shelf-life	
Storage at room temperature	
Safety	
No disease transmissions	
No antigenic reactions	
No immunologic effects	
Efficacy	
Enhanced oxygen delivery	
Improved rheologic properties	

POTENTIAL ROLE OF HEMOGLOBIN-BASED OXYGEN CARRIERS IN TRAUMA CARE

The US Food and Drug Administration (FDA) approval of a new product proceeds through phase I, II, and III studies designed to establish safety and efficacy (**Table 1**). FDA regulation defines efficacy as follows: "Effectiveness means a reasonable expectation that...the pharmacologic or other effect of the biologic product...will serve a clinically significant function in the diagnosis, cure, mitigation, treatment, or prevention of disease in man."¹ The Center for Biologics Evaluation and Research (CBER) is the review body for the FDA in the arena of biologies and has published a comprehensive listing of "points to consider in the safety evaluation of HBOCs."²

Table 1 Potential role of hemoglobin-based oxygen carriers in trauma care		
Application	Location	
Perioperative applications		
Reduce allogeneic RBC transfusions	ED, angiography, OR, ICU	
Attenuate transfusion immunodulation	OR, ICU	
Acute hemorrhagic shock		
When stored RBCs are unavailable	Field, ED, OR, ICU, remote hospital, civilian disaster, military conflict	
More efficient resuscitation	Field, ED, OR, ICU	
Low-volume resuscitation	Remote hospital, civilian disaster, military conflict	
Regional perfusion		
Enhance oxygen delivery		
Ischemic reperfusion tissue/organ	OR, ICU	
Inflamed tissue	OR, ICU	
Ex vivo organ perfusion	Hospital, OR	

Abbreviations: ED, Emergency department; OR, Operating room.

Download English Version:

https://daneshyari.com/en/article/3108526

Download Persian Version:

https://daneshyari.com/article/3108526

Daneshyari.com