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a b s t r a c t

In this paper, the dynamic response of the surrounding rock and structure of a tunnel that is subjected to
an inner water pressure is investigated by taking hydraulic–mechanical coupling into account. A dimen-
sionless permeable parameter defines the flow capacity of the lining, is introduced by considering the rel-
ative permeability of the lining of the tunnel and the surrounding rock. Further more, a dimensionless
loading coefficient depending on the porosity of the medium, is introduced to determine approximately
the quantity of the inner water pressure supported by the solid and the pore water at the boundary of
tunnel. Therefore, the coupling property of partial sealing, porosity of tunnel material and geometry is
developed. The analytical solutions of stress, displacement and pore pressure are derived in the Laplace
transform domain with and without considering the stiffness of lining. Numerical results in time domain
are obtained by Durbin’s inverse Laplace transform and are used to analyze the influence of the loading
coefficient, permeable parameter, relative stiffness and thickness on stress, displacement and pore pres-
sure in the rock mass. The available result without considering the coupling properties of partial sealing
and porosity is only an extreme case of this paper.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many underground structures are built in saturated rock mate-
rial. To study the deformation and stability of such structures, it is
obviously necessary to take hydraulic–mechanical coupling into
account. Biot’s poroelastic theory for both isotropic and anisotropic
porous media defined the fundamental for the model of such a cou-
pling (Biot, 1941, 1955). More recent works have been performed
to complete and generalize the initial works of Biot (Detournay
and Cheng, 1993; Rice and Cleary, 1976), particularly for aniso-
tropic porous media.

A great number of experimental, analytical and numerical re-
search works have been carried out to characterize and model
the mechanical behavior of rock. A reformulation of anisotropic
and poroelastic equation was presented by Thompson and Willis
(Thompson and Willis, 1991) and, the relationships between the
macroscopic poroelastic constants and the properties of porous
media constituents have been established. To better elucidate the
physical meaning of poroelastic constants, Cheng (1997) proposed
a comprehensive methodology for the determination of anisotropic
poroelastic constants from easily realizable laboratory tests.

Detournay and Cheng (1988) were concerned with the analysis
of various coupled poroelastic processes triggered by the drilling
of a vertical borehole in a saturated formation subjected to a
non-hydrostatic in situ stress. Schmitt et al. (1993) presented a
time-dependent analytic solution for the pore pressure within a
permeable and porous hollow cylinder, and was used to estimate
the laboratory experiment results. Analytical and numerical solu-
tions using anisotropic and poroelastic (or poroviscoelastic) theory
were also proposed by Abousleiman et al. (1993, 1996) for the
model of a generalized Mandel’s problem and of an inclined bore-
hole one. All these models deal with the poroelastic and porovisco-
elastic behaviour of porous materials with initial constant isotropy
and anisotropy. Recently, Liu et al. (2005) analyzed the scattering
of plane harmonic wave by a partially permeable cylindrical shell
embedded in the poroelastic medium to model the effect of pri-
mary wave on the tunnel.

Measurements of poroelastic constants and hydraulic flow
parameters of tight rock are important for modeling many geolog-
ical processes. Bemer et al. (2004) studied the behavior of this
clayey rock within the framework of Biot’s mechanics of fluid sat-
urated porous solids. Drained and undrained oedometric tests (i.e.
uniaxial strain tests) were performed to determine the poroelastic
parameters for different stress levels. Hart and Wang (2001) pre-
sented a method for determining three independent poroelastic
constants: the drained bulk compressibility; the undrained bulk
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compressibility; Skempton’s B coefficient, and two hydraulic flow
parameters: the hydraulic conductivity and the three-dimensional
unconstrained specific storage, from a single test.

The traditional dynamic and static analysis method of a tunnel
subjected to inner water pressure is either to idealize the pressure
as axisymmetric loading (Xu, 1982; Xie et al., 2004) without con-
sidering the porosity of solid, or to idealize the pressure as fluid
pressure (Xie et al., 2004; Senjuntichai and Rajapakse, 1993) when
the porosity of solid is considered. In which there are only two ex-
treme cases due to the assumption of porosity of the lining and the
rock mass. In fact, a part of the inner water pressure is supported
by the solid, the others are supported by the pore water at the
boundary of tunnel, the proportion is then depended on the area
coefficient of pore water related to the porosity of tunnel material
and rock. Therefore, the inner water pressure can’t be idealized
simply as axisymmetric loading or fluid pressure. A dimensionless
loading coefficient C, which can be used to denote the value of in-
ner water pressure supported by the pore water and the rock mate-
rial, respectively, was proposed by Liu et al. (2005), and an analysis
was carried out.

Since the proportionality constant j that depends on the poros-
ity of the lining and the rock material was presented by Li (1999) to
define the partial permeability property of tunnel and is intro-
duced directly herein, then the coupling property of partial sealing
and porosity of the tunnel material and geometry is developed, and
the dynamic response of the lining and rock in a partially sealed
pressure tunnel is studied in this article. The analytical solution
of the interaction of lining and rock is derived in the Durbin
(1974) Laplace transform, and by inverting the Laplace transform,
numerical results in the time domain are obtained and are used
to discuss the influence of the loading coefficient C, the porous
and geometry constants that indicate the property of the lining
and rock on the stress, displacement and pore pressure.

2. Poroelastic model and general solution

The poroelastic theory was firstly introduced by Biot (1941,
1955), and reformulated by Rice and Cleary (1976) in terms of easily
identifiable quantities and material constants. Following the Biot’s
original theory, the basic dynamic variable in the governing equa-
tions are the total stress rij (note that tension is here negative), the
excess pore pressure p, the solid strain eij and the variation of the
fluid content per unit reference volume n with the corresponding
conjugate kinematic quantities. The constitutive model can be writ-
ten in terms of these quantities as (Rice and Cleary, 1976):

rij ¼ 2Geij þ kdije� adijp ð1Þ

p ¼ �2GBð1þ muÞ
3ð1� 2muÞ

eþ 2GB2ð1� 2mÞð1þ muÞ2

9ðmu � mÞð1� 2muÞ
n ð2Þ

where rij and p denote the increase in total stress components and
pore pressure over the initial equilibrium, respectively. k, G are the
Lame constants of rock material; dij is the Kronecker symbol; m and
mu (the range of mu is m � 0.5) are the drained and undrained Pois-
son’s ratios; B (ranges from 0 to 1) is the Skempton’s pore pressure
coefficient. The parameters B and mu can be used to account for the
poroelastic coupling of deformation and flow processes; a is the
coefficient of Biot effective stress, the realistic range of variation
for a is 0–1, the expression of parameter a is

a ¼ 3ðmu � mÞ
Bð1� 2mÞð1þ muÞ

ð3Þ

To obtain some limiting cases, the micromechanical parameters
should be dealt with, i.e. the upper bounds for B, mu and a are
simultaneously reached for cases in which both the fluid and the
solid constituents are incompressible.

Besides the constitutive Eq. (1), the governing equations for
poroelasticity consist of the equilibrium equations:

rij;j ¼ 0 ð4Þ

Darcy’s law

� ks

cw
p;i ¼ qi ð5Þ

and the continuity equation for the fluid phase

@n
@t
þ qi;i ¼ 0 ð6Þ

where ks is the intrinsic permeability of rock; cw is the unit weight
of the pore water; qi is the specific discharge.

Let us consider now a pressure tunnel (shown in Fig. 1) embed-
ded in an infinite porous elastic rock with inner and outer radius r1

and r2, respectively. Prior to removal of the material, the porous
mass is in situ stress state and that the deformation and redistribu-
tion of stress induced by the excavation tends to be stable is as-
sumed before a time-dependent inner water pressure q(t) is
applied on the surface of the lining. So, the effect of the in situ
stress may not be taken into account. Since the lining and the rock
are completely in contact, and the thickness of lining (h = r2 � r1) is
so small with respect to the radius of tunnel, there is no need to
distinguish whether the loading is applied at r = r1 or r = r2. As a re-
sult, the inner water pressure q(t) can be thought of as acting on
the interface of lining and rock. In addition, the tunnel is assumed
to be long enough that it can be considered as a plane strain axially
symmetric problem.

To obtain the solutions of stress, displacement and pore pres-
sure-induced by inner water pressure acting on the surface of the
tunnel in an infinite rock, the field quantities have the form
p = p(r, t), rij = rij(r, t), ur = ur(r, t). The diffusion equation can be de-
rived by combining the governing Eqs. (2), (5), and (6):

ks

cw

@2p
@r2 þ

1
r
@p
@r

 !
¼ a

@e
@t
þ 1

M
@p
@t

ð7Þ

where M ¼ 2GB2ð1�2mÞð1þmuÞ2
9ðmu�mÞð1�2muÞ , is Biot’s modulus.

With the help of Eqs. (1), (2), and (4), the relationship of volu-
metric strain and excess pore pressure can be obtained

@e
@r
¼ a

kþ 2G
@p
@r

ð8Þ
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Fig. 1. Geometry of a pressure tunnel.
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