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a b s t r a c t

This paper presents analysis on two 3D mesh to 2D map strategies applied to unwrap images of rock tun-
nels and facilitate visualization of large datasets. First, we examined mesh parameterization algorithms
which are used in computer graphics to convert a 3D mesh model to a 2D representation.
We found that while these methods were automatic and could provide 2D maps with minimal metric

distortion (ie: conservation of lengths in 3D when mapped to 2D), they exhibited twisted shapes and
were not intuitive to interpret. Second, we proposed two novel approaches, combining mesh deformation
algorithms, which are used in computer animation to reshape a 3D mesh to resemble a 3D plane, and
projection onto a 2D plane. We found that while these methods required user interaction and introduced
a greater amount of metric distortion, their outputs were fairly intuitive to interpret. To compare the
relative merits of mesh parameterization and mesh deformation and projection, the different strategies
are applied to a 8.2 m wide by 41 m long by 6.7 m high subsection of a mining tunnel. The metric
distortion produced was calculated and their respective output 2D maps are presented and discussed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Terrestrial laser scanning (TLS) has enabled high-resolution
three-dimensional (3D) imaging of underground tunnels in the
form of point clouds, which are unstructured collections of points
where each point represents the 3D Cartesian coordinates (x, y, z)
of the location where the laser beam has illuminated the surface.
Surface reconstruction algorithms can then be used to connect
individual points to produce a triangulated mesh which conforms
to the rock face. These triangulated meshes have been used to facil-
itate fracture analysis (Mah et al., 2011; Lato and Vöge, 2012;
Fekete et al., 2010; Lai et al., 2014), extraction of surface roughness
(Mah et al., 2013; Lai, 2013; Lai et al., 2014; Mills and Fotopoulos,
2013), mapping shotcrete thickness (Lato and Diederichs, 2014;
Fekete et al., 2009), and deformation analysis (Van Gosliga et al.,
2006; Lemy et al., 2006).

Analysis and interpretation of the hundreds of thousands ele-
ments which compose a typical triangular mesh requires dedicated
hardware with specialized software for visualization. Such equip-
ment is not always readily available, especially underground. It
would therefore be beneficial if a 2D representation could be

created from the 3D triangulated mesh to allow (near) real-time
interpretation in operational conditions, an approach akin to
unwrapping acoustic televiewer images (Paillet et al., 1990) for
quick inspection. Additionally, it would be useful to have an
unfolded 3D tunnel mesh with minimal distortion to make 2D
figures for engineering reports.

While many TLS instruments acquire 2D photographs concur-
rently with 3D data to produce colored point clouds, these pho-
tographs are not bidirectional mappings. Any changes made to
the 2D photographs, such as adding markings for highlighting
specific features, cannot be mapped back to the 3D data. Similarly,
analysis which encodes information through color (ie: fracture
analysis (Mah et al., 2011; Lato and Vöge, 2012; Fekete et al.,
2010; Lai et al., 2014)) in the 3D triangulated mesh cannot be
transferred to the 2D representation. Yet, for certain applications
such as engineering reports, transferring data attributes from anal-
ysis performed on the 3D triangulated mesh unto a 2D representa-
tion would be more intuitive to understand and easier to visualize.
Unfortunately it has been mathematically proven that very few
surfaces can be transferred from 3D space into 2D space without
metric distortion (lengths in 3D are not preserved in 2D) and some
cannot even be transferred without being cut into pieces first
(Kreyszig, 1991).

This paper investigates if existing methods for computing a
bidirectional mapping between a 3D mesh model and a 2D
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representation would generate a realistic mapping with minimal
distortion. Once existing methods have been examined, an innova-
tive strategy combining mesh deformation, the act of changing the
shape of an existing mesh, and projection from 3D space onto a 2D
plane, is proposed for creating bidirectional mappings between the
2D and 3D representations of underground tunnels. Fig. 1 is a flow-
chart of the methods presented in this paper. To discuss their rel-
ative merit, with an emphasis on how they can be used in practice,
they are applied onto the same subsection of the mining tunnel
show in Fig. 2. The main contributions of the paper are: (1) the first
comparative study on the relative merit of different methods for
unfolding 3D tunnel meshes taken with a TLS instrument and (2)
a novel strategy specifically designed for unfolding tunnel meshes
so that a bidirectional mapping between the original mesh and the
corresponding 2D representation can be obtained. Our approach
allows for both the final unfolded tunnel mesh to be intuitively
interpreted as a 2D image and the transfer of data attributes
between the 2D and 3D representations.

2. Mesh parameterization theory

2.1. Metric distortion

In the field of computer graphics and geometry processing, sur-
face parameterization is used to convert an arbitrary surface into a
domain space. When the surface in question is a 3D mesh and the
domain space is any 2D shape, the process is known as mesh
parameterization. The output of mesh parameterization is typically
a unit square known as a uv-map (Sheffer et al., 2006) where each
coordinate (x, y, z) from the vertices of the 3D mesh is associated
with a coordinate (u, v) in the uv-map. During the process of com-
puting a uv-map, metric distortion (Sheffer et al., 2006; Floater and
Hormann, 2005) occurs because there is almost always a loss of
information when moving from a higher to a lower dimensional
space. Only perfect cylinders (such as borehole acoustic televiewer
images), cones and flat planes can be transformed from 3D to 2D
(and vice versa) without metric distortion (Kreyszig, 1991;
Sheffer et al., 2006; Floater and Hormann, 2005; Hormann et al.,
2007). An intuitive view of metric distortion can be gained from
considering the many methods of generating a 2D map of the
Earth. For example, the common Mercator projection draws the
Earth onto a rectangle but exaggerates the size of certain countries,
an example of area distortion. Despite this distortion, the original
3D positions can still be recovered through the longitude and lati-
tude which is analogous to recovering the original 3D position on a
mesh through the uv-map.

Let p be a point on the surface of the input 3D mesh and let q be
the corresponding point in some domain X. To quantify metric

distortion, differential geometry examines the effects of moving q
by an infinitesimal amount, D, on the corresponding point p. Dif-
ferential geometry describes these effects through a special matrix
known as the Jacobian which can be decomposed into two singular
values r1 and r2 (a rigorous derivation can be found in Appendix
A). Since these singular values represent the lengths of the semi-
axes of an ellipse, when they are both equal to one there does
not exist any distortion since a circle drawn in the parameter
domain will remain a circle when transformed onto the 3D space.
Thus, different combinations of these singular values yield varying
amounts of metric distortion.

Sections 2.2 and 2.3 describe two mesh parameterization
algorithms which automatically compute uv-maps through the
minimization of metric distortion.

2.2. Least squares conformal mapping (LSCM)

Developed by Lévy et al. (2002), the least squares conformal
mapping (LSCM) aims to minimize the Cauchy-Riemann equations
(Gamelin, 2001) in a least squares sense. For the purposes of mesh
parameterization, a conformal mapping f satisfies the Cauchy-
Riemann conditions which are:
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In general, however, there are no conformal mappings for piece-
wise linear functions such as triangulated meshes. To circumvent
the problem, Lévy et al. (2002) defined the conformal energy per
triangle t, Et, as:

Et ¼ ðr1;t � r2;tÞ2 ð2Þ
The minimization of conformal energy for all triangles in a

mesh leads a discrete conformal mapping which is a close approx-
imation to a conformal mapping for a smooth surface. The equation
to minimize is:X
t2T

EtAt ð3Þ

where T is the set of triangles in the mesh and At is the each area of
triangle t. Thus Eq. (3) satisfies Eq. (1) and leads to a linear system
which can be solved in a straightforward manner. The solution of
Eq. (3) yields the coordinates (u, v) for every vertex.

2.3. Angle based flattening (ABF and ABF++)

Sheffer and Sturler (2001) observed that a 2D triangulation is
uniquely defined by the corner angles of each triangle. Using this
observation, they reformulated the mesh parameterization

Fig. 1. Flowchart of the methods presented in this paper. Methods which require user interaction are contained within the gray box.
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