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a b s t r a c t

The orientation, trace length, spacing, and location of probabilistic discontinuities in rock masses are ran-
domly developed. Thus, the shape, size, and location of blocks cut off by these probabilistic discontinu-
ities are accordingly stochastic. It is difficult, or even impossible, to determine the volume and location of
the blocks using the block theory proposed by Goodman and Shi (1985). Stochastic block analysis (SBA) is
capable of identifying three-dimensional (3-D) stochastic blocks from a randomly developed discontinu-
ity network (discrete fracture network). However, in practice, 3-D blocks are not identified well in sim-
ulated fracture networks and so the use of SBA is seldom encountered. In this paper, the procedures
involved in stochastic block identification are first outlined. The concept and calculation of overlaying
area and ratio are then introduced. Then, the stochastic block identification results are used to explore
the statistical distribution of the block size and overlaying ratio. Subsequently, the laws governing devel-
opment of the stochastic blocks were elucidated. The results show that the block size has a negative
exponential distribution and the overlaying ratio follows a C distribution. The overlaying ratio increases
as the trace length to spacing ratio increases. We further outline, for the first time, approaches to deter-
mine block support measures by analyzing the characteristics of the statistical distributions of the sto-
chastic blocks. Block support issues relating to a practical underground plant were also studied. The
lengths and anchor forces and spacings of the rock bolts were quantitatively determined according to
the results of a statistical analysis of the stochastic blocks. Statistical analysis of stochastic blocks is of
great significance in understanding the development characteristics of the stochastic blocks and in quan-
titatively determining block support measures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Rock masses are generally composed of rock blocks and discon-
tinuities. Discontinuities (joints, fractures, faults, bedding planes,
etc.) divide the rock mass into blocks of various sizes and shapes.
Discontinuities may vary greatly in different rock masses. Rock
deformation and instability often result from opening, closing,
and shearing of discontinuities. In this way, discontinuities control
the stability of the rock mass.

In 1985, Goodman and Shi formally proposed the underlying
foundations of block theory (Goodman and Shi, 1985). Classical
block theory assumes that discontinuities are infinite planes and
the blocks cut by discontinuities and excavation surface(s) act as
rigid bodies. The motion of the block is assumed to be translational
in nature, i.e. rotational motion is not considered. According to this
theory, the removability of a block and the block’s failure mode can
be analyzed using geometry and topological methods. Potentially

unstable or key blocks can be determined by incorporating com-
paratively simple mechanical analysis. Then, the support forces
required for the key blocks can be calculated to ensure the stability
of the blocks. Block theory has been researched and applied world-
wide due to its applicability to the analysis of the local stability of
fractured rock masses.

There are two kinds of discontinuity. Probabilistic discontinu-
ities are represented by joints and deterministic discontinuities
are represented by faults. In real rock masses, the magnitudes of
the probabilistic discontinuities are much larger than those of
the deterministic discontinuities, and surveying the former is
much more difficult than the latter. The geometrical parameters
of probabilistic discontinuities, i.e. orientation, trace length (or per-
sistence), spacing (or density of the joints), and location, are ran-
dom. Thus, the blocks cut by probabilistic discontinuities are
accordingly stochastic, which means that their shapes, sizes, and
locations are stochastic.

During the construction of major rock foundations, joint trace
maps can be prepared for the exposed faces of the rock masses.
From these maps, all the potential key blocks can be located and
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their volumes and shapes can be determined for timely treatment.
However, it may not be possible to acquire such specific data
before the rock faces are exposed. Monte–Carlo simulations can
be used to repeatedly generate a series of 3-D joint network and
2-D trace maps. In this case, it is difficult to determine precisely
the locations and volumes of blocks using classical block theory
as the locations, spacing, and lengths of the joints are not fixed
(Young and Hoerger, 1989; Goodman, 1995). Accordingly, the sta-
bility factor considering the cohesion of the sliding face, and the
support force considering the volume of the block, cannot be deter-
mined (Zhang, 2010). In order to overcome these shortcomings,
stochastic block analysis (SBA) has been proposed (Young and
Hoerger, 1989; Shi and Goodman, 1989; Shapiro and Delport,
1991; Wu et al., 1998; Shi, 2002; Hatzor and Feintuch, 2005;
Zhang, 2010). SBA can directly identify blocks in the simulated dis-
continuity network (discrete fracture network, DFN). Then, the
geometrical characteristics of the blocks can be statistically ana-
lyzed and their degree of development realistically evaluated.
Block support measures can be analyzed correspondingly. SBA
undoubtedly constitutes significant progress in block theory.

The main components of SBA consist of two parts:

(1) Geometrical analysis of the stochastic blocks. The stochastic
blocks in the 3-D model of the network of discontinuities
are identified by employing block theory and geometrical
methods.

(2) Statistical analysis of the stochastic blocks. Based on the
results from part (1), the volume and area of the block and
the overlaying area are calculated and analyzed statistically.
This aids understanding of the inherent geometrical features
of the stochastic block and helps to determine the block sup-
port measures required.

Stochastic blocks can be identified in the simulated discontinu-
ities network. Young and Hoerger (1989) proposed a probabilistic
approach to key block analysis. This incorporates several probabil-
ity distributions (for the joint’s orientations, trace lengths, spac-
ings, and friction angles in the rock) which are used to predict
the size, shape, and frequency of occurrence of the key blocks.
Shapiro and Delport (1991) identified closed triangles in the 2-D
joint trace map. Then, geometrical analysis was adopted to calcu-
late the probability an intersection point is located within a rock
mass so as to form a complete block. Mauldon (1995) identified
stochastic blocks in 2-D. Shi and Goodman (1989), Wu et al.
(1998), and Shi (2002) identified stochastic blocks in 3-D using
procedures involving generating joint trace maps, cutting trees,
finding primary loops, and delimiting the maximum probable
regions of the blocks. So there is an implicit assumption in this
body of work that joints intersecting the excavation surfaces
extend far enough to cut the block entirely at their mutual inter-
sections. Since the extents of the joints are always finite, the max-
imum probable regions of the blocks are not equal to realistic 3-D
blocks. Goodman (1995) applied SBA to the Pacoima Dam, Los
Angeles County, US.

Hatzor and Feintuch (2005) demonstrated that the probability
that a possibly removable joint pyramid consists of more than
three mutually exclusive joints in a space is zero. Consequently,
only tetrahedral blocks need to be considered in the stability anal-
ysis of the analyzed free surface. In addition, they also developed
an expression for the probability of joint intersection. This
approach is, in fact, highly appropriate if we cannot determine
the exact locations of the joints in the stochastic block analysis.

Zhang (2004, 2010) proposed an approach for identifying the
true 3-D stochastic blocks in a 3-D simulated discontinuity net-
work. Based on earlier work in the literature (Shi and Goodman,
1989; Wu et al., 1998; Shi, 2002), these authors obtained true

3-D stochastic blocks by generating joint trace maps, cutting trees,
finding primary loops, delimiting the maximum probable regions
of the blocks, and their novel method of identifying 3-D blocks
according to the occurrence of intersection points located within
the rock mass. Visualization of 3-D blocks is very convenient for
their application and further study. Furthermore, there is another
advantage in that all the blocks can be directly identified from
the 3-D DFN. The influence of location, spacing, and size of the dis-
continuities on the block shapes is considered once and for all. In
other words, the identified stochastic blocks are the true ones once
the 3-D DFN has been determined using simulations, even if the
simulated DFN is significantly different from the real rock mass.

Kuszmaul (1999) proposed a method for estimating key block
sizes which accounts for joint set spacing. Using this method, the
sizes of the key blocks can be determined more realistically. How-
ever, the persistence of the discontinuities was assumed to be infi-
nite. By conducting simulations of fracture networks and blocks
using the FracMan and RockBlock codes Starzec and Tsang (2002)
quantified the relationship between the total volume of the unsta-
ble blocks and the density of the intersections between surface
fractures. Unlike approaches directly analyzing the statistical char-
acteristics of blocks based on real 3-D stochastic blocks sought
from DFNs, some works in the literature (Mauldon, 1995) studied
the statistical distribution in the block size by analyzing the prob-
ability of intersection of the fractures in the block formations. As
most of the published articles have not successfully identified the
true 3-D stochastic blocks in the simulated fracture network, the
statistical analysis of stochastic blocks is limited and should be
studied further. Furthermore, studies on rock support based on
the statistical analysis of stochastic blocks are virtually
nonexistent.

2. Main procedures for geometrical identification of stochastic
blocks

The procedures for the geometrical identification of stochastic
blocks are shown in Fig. 1. Below we give brief introductions to
the main procedures involved in the analysis.

2.1. Geological statistical analysis and fracture network simulation

There is much in the literature relating to geological statistical
methods and probability distributions of the discontinuity’s geo-
metrical parameters. Simulation of 3-D fracture networks is also
covered extensively.

Polar equal-area projections and strike rose diagrams are usu-
ally used in the statistical analysis of fracture orientations and
clusters. Research has shown that a hemispherical normal distribu-
tion, a log-normal distribution, or Bingham distribution are suit-
able for representing the probability distributions of the
fractures’ orientations (Kulatilake et al., 1993, 1996). The scanline
method (Priest and Hudson, 1981) is usually used for measuring
and statistically analyzing the spacing between the discontinuities.
The results show that a negative exponential distribution is most
suitable for describing the spacing’s statistical distribution (Priest
and Hudson, 1981; Dershowitz and Herda, 1992; Kulatilake et al.,
1993, 1996). It can be shown mathematically that the discontinuity
spacing obeys a negative exponential distribution when the frac-
tures develop uniformly in space. Scanline and sampling windows
(Kulatilake and Wu, 1984) are often used in the measurement and
statistical analysis of the fractures’ trace lengths. The results indi-
cate that a gamma, log-normal, or negative exponential distribu-
tion is suitable for describing the distribution in the trace length
(Priest and Hudson, 1981; Einstein and Baecher, 1983; Kulatilake
et al., 1996).
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