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a b s t r a c t

In construction engineering, permeation grouting with microfine cement is a widely utilized approach for
soil improvement. Hence, estimating groutability is a very important task that should be carried out in
the planning phase of any grouting project. This research aims at establishing a novel method for
groutability prediction with the utilization of microfine cement in sandy silt soil. The newly proposed
approach integrates the Bayesian framework and the K-nearest neighbor (K-NN) density estimation
technique. The Bayesian framework is used to achieve probabilistic groutability estimations. Meanwhile,
the K-NN method is employed to approximate the conditional probability density functions. Moreover, to
establish the new approach, 240 in-situ grouting cases have been recorded during the progress of Mass
Rapid Transit and highway projects in Taiwan. Experimental results point out that the proposed method
can deliver superior prediction accuracy. Hence, the new groutability estimation approach is a promising
alternative to help construction engineers in grouting process assessment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In geotechnical engineering, permeation grouting is a widely
employed ground improvement approach for reducing the perme-
ability of granular soils (Huang et al., 2007; Zebovitz et al., 1989).
Especially for underground construction projects, inflows of
groundwater have always brought about critical issues for geo-
technical engineers. Incidents of inflow often lead to undesirable
consequences such as construction delays, serious damages for
the quality of the underground structures, and catastrophic dam-
ages for the quality of the surface structures. Therefore, permeation
grouting is a crucial task needed to be accomplished in a majority
of ground improvement projects.

Among the approaches for permeation grouting, microfine
cement grouts have been increasingly utilized in the industry. It
is because this approach usually provides improved groutability
for the target geomaterial and it does not cause groundwater pol-
lutions in the surrounding environment (Perret et al., 2000;
Zebovitz et al., 1989). Furthermore, the microfine cement grouts

are demonstrated to possess the ability of filling cracks with small
openings as well as penetrating fine soils with very low permeabil-
ity (Perret et al., 2002).

Although there are several formula-based methods for grouta-
bility prediction reported in literature, an accurate prediction of
grouting activity using microfine cement is an immensely
challenging task. The reason is that the validity of conventional
predictive formulas (Akbulut and Saglamer, 2002; Incecik and
Ceren, 1995), which are mostly based on the grain-size of the soil
and the grout, is unreliable for semi-nanometer scale grout (Liao
et al., 2011).

Various studies have dedicated in investigating groutability
estimation. Akbulut and Saglamer (2002) and Ozgurel and
Vipulanandan (2005) point out that in addition to the size of the soil
and the grout, the water-to-cement ratio of grout (w/c), the void size
in soil, and the fines content (FC) of the total soil should be taken into
account (Akbulut and Saglamer, 2002). Liao et al. (2011) found that
the inclusion of soil gradation information, namely the coefficient of
uniformity (Cu), which measures the particle size range, and the
coefficient of gradation (Cz), which characterizes the particle size
curve, can boost the overall predictive performance. Needless to
say, it is beneficial to take into account these factors for estimating
the grouting process (Tekin and Akbas, 2011).

Because the site condition is highly uncertain and inherently
context-dependent, artificial intelligence (AI) methods may
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provide viable alternatives for the groutability prediction problem.
AI techniques can be utilized to derive new facts from historical
data (Cheng et al., 2013). Moreover, the prediction process may
change adaptively in response to new information obtained from
the data. Notably, the problem of groutability prediction can be
modeled as a classification task that contains two class labels
(‘success’ and ‘failure’). Therefore, AI based classifiers can be prom-
ising solutions for coping with the problem at hand.

Artificial Neural Network (ANN) methods have been proved to
be a feasible alternative for groutability prediction as well as for
other problems in construction field (Chen et al., 2009; Kalinli
et al., 2011; Liao et al., 2011; Tekin and Akbas, 2011). Nonetheless,
the implementation of the ANN is exposed to several drawbacks.
This method suffers difficulties in selecting a large number of con-
trolling parameters such as the number of hidden layers, the num-
ber of neurons, and the learning rate (Bao et al., 2005).
Furthermore, one major disadvantage of the ANN approach is that
its training process is achieved through a gradient descent
algorithm on the error space, which can be very complex and
may contain many local minima (Kiranyaz et al., 2009). Thus, train-
ing process is likely to be trapped into a local minimum and this
unquestionably hampers the predictive performance. Another dis-
advantage of ANN models lies in their knowledge representation.
The black box nature of the ANN makes it unmanageable for con-
struction engineers to comprehend how the approach predicts
groutability.

On the other hand, classifiers based on the Bayesian framework
are effective probabilistic approaches for solving classification
problems (Agrawal and Bala, 2008). Bayesian Classifiers, relying
on the principle of the Bayes decision theory, provides a funda-
mental methodology for dealing with statistical classification tasks
when the probability distribution of the pattern is known (Duda
et al., 2001). This approach features a number of advantages, such
as flexibility in modeling, capability of coping with uncertainty,
and resilience to noise (Langley and Sage, 1994). In addition,
experiments from previous researches have revealed that Bayesian
methods can deliver competitive prediction performances com-
pared with ANN models (Domingos and Pazzani, 1997;
Kononenko, 1993; Sebastiani, 2002). Nevertheless, none of previ-
ous studies has investigated the capability of Bayesian approaches
in groutability prediction. Thus, our research is an attempt to fill
this gap.

The objective of this study is to put forward a novel groutability
prediction approach relying on the Bayesian framework, named as
Bayesian Classifier for groutability prediction (BCGP). In the new
model, Bayesian inference is used to derive the posterior probabil-
ity of groutability given an input pattern. Meanwhile, the K-nearest
neighbor (K-NN), a simple yet effective approach for density
estimation, is employed for approximating the class-conditional
probability. The rest of the paper is organized as follows. The
second section of this paper review the methodology employed
to establish the BCGP. The third section provides the detailed
description of the new approach. Experimental results are reported
in the fourth section. Conclusion of this study is addressed in the
last part of the article.

2. Methodology

2.1. Bayesian framework for classification

In the field of machine learning, the goal of classification is to
assign an object to one of M discrete classes Cm where m = 1,. . ., M.
Thus, the input space is separated into several decision regions
by the decision boundaries (Bishop, 2006). To classify the object
based on the evidence provided by the feature vector X, it is

mandatory to obtain the conditional probability P(Cm|X), which
expresses how likely the input X belongs to the class Cm. Based
on that information, the object will be assigned to the class with
largest conditional probability.

Within the context of Bayesian theorem, the conditional proba-
bility P(Cm|X) is calculated as follow (Bishop, 2006; Duda et al.,
2001):

PðCmjXÞ ¼
PðXjCmÞ � PðCmÞ

PðXÞ ð1Þ

where P(Cm|X) represents the posterior probability of the class Cm.
Meanwhile, P(X|Cm) is called the likelihood which is the class-
conditional probability density function of the feature X. P(Cm)
denotes the prior probability of the class Cm. And P(X) represents
the evidence factor.

The evidence factor P(X) can be viewed as a scale factor used to
ensure that the posterior probabilities sum to one (Duda et al.,
2001). It can be is computed in the following manner:

PðXÞ ¼
XM

m¼1
PðXjCmÞ � PðCmÞ ð2Þ

As can be seen from Eq. (1), the structure of Bayesian classifica-
tion relies upon the prior probabilities P(Cm) and the conditional
densities P(X|Cm) (Theodoridis and Koutroumbas, 2009). The first
quantity can be estimated directly from the distribution of the
training samples among classes (Clark and Niblett, 1989). If N is
the total number of available training cases and Nm is the number
of cases belonging to the class Cm, then the prior probability of this
class is calculated as P(Cm) = Nm/N. The next step is to derive the
class-conditional density P(X|Cm). The P(X|Cm) describes the distri-
bution of the feature vector X in each class. This conditional density
is also known as the likelihood function of Cm with respect to X.

Herein, we consider the problem in which the pattern X repre-
sents a D-dimensional vector, and each attribute of X is denoted as
Xj where j = 1, . . ., D. Thus, to derive the likelihood function P(X|Cm),
the common approach is to assume that the probability distribu-
tions of attributes Xj, within each class, are independent of each
other. In this case, the classification approach is known as the
Naïve Bayesian Classifier (Bishop, 2006). Accordingly, the class-
conditional density can be computed as follows:

PðXjCmÞ ¼
YD

j¼1

PðXjjCmÞ ð3Þ

where P(Xj|Cm) denotes the probability distribution of the attributes
Xj within each class Cm. In addition, the density P(Xj|Cm) is often
assumed to be a Normal distribution.

Obviously, the assumption that the probability distributions for
attributes are independent of each other can be unrealistic. It is
because correlations among attributes are not unusual in real
world circumstances. Additionally, a Normal distribution may not
be the most appropriate approximation. It is because the true
probability density function can possibly be multi-modal and the
function can also take an arbitrary form. When the aforementioned
assumptions are violated, the performance of the Bayesian Classi-
fier can be undoubtedly degraded (Greco et al., 2012). Therefore,
this research proposes to utilize the K-NN approach for estimating
the class-conditional density P(X|Ck).

2.2. K-nearest neighbor for Density Estimation

Generally, density estimation is the task of modeling a probabil-
ity density function when only a finite number of data instances
are available. This task can be challenging because the data points
are in high dimensional space and the true probability distribution
is oftentimes unknown (Scott, 1992). Among the methods for
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