Contents lists available at ScienceDirect

Archives of Oral Biology

journal homepage: www.elsevier.com/locate/aob

Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

^a Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Chiang Mai University, Chiang Mai, Thailand

^b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

^c Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

ARTICLE INFO

Article history Received 6 October 2015 Received in revised form 23 December 2015 Accepted 5 January 2016

Keyword: Insulin Obesity Diabetes Salivary gland function

ABSTRACT

Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction					
	1.1.	Search strategy and selection criteria for this review	. 63			
	1.2.	Salivary flow rate in NIDDM from <i>clinical studies</i>	. 63			
	1.3.	Salivary secretion in NIDDM from <i>clinical studies</i>	. 67			
	1.4.	Possible mechanisms of salivary gland dysfunction in NIDDM and obesity-insulin resistance: lesson learned from in vitro and in vivo				
		studies	. 69			
2.	Conclusion					
	Conflict of interest					
	Autho	Author contribution				
	Ackno	Acknowledgments				
	Refere	ences	. 70			

1. Introduction

The salivary glands are important organs in the oral cavity and are responsible for the secretion of saliva into the oral and

http://dx.doi.org/10.1016/i.archoralbio.2016.01.002 0003-9969/© 2016 Elsevier Ltd. All rights reserved. pharyngeal cavity. The main functions of saliva are to maintain oral mucosa integrity, prevent oral infection and to promote appetite (Hayward & Shea, 2009), resulting in a comfortable quality of life (Amerongen & Veerman, 2002). The acinar cells of the salivary glands are the secretory units that synthesize and secrete proteins, while water and electrolytes can be pass though the acinar cells via variety of mechanism (Proctor & Carpenter, 2007). Therefore, saliva is mainly composed of 99% water and only a small portion of 1% proteins. The activity of salivary glands is regulated by the sympathetic and parasympathetic innervations (Garrett & Kidd, 1993). The activation of parasympathetic innervations in the

Review

CrossMark

Corresponding author at: Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University Department of Oral Biology and Diagnostic Science, Faculty of Dentistry Chiang Mai University, Chiang Mai, 50200, Thailand. Tel: +66 53 944 451: fax: +66 53 222 844

E-mail addresses: scchattipakorn@gmail.com, siriporn.c@cmu.ac.th (S.C. Chattipakorn).

Table 1

Model (all human)	Age	Method	Major findings	Interpretation	Ref.
 Obese with NIDDM Female: 11 Male: 9 Non-obese with NIDDM Female: 10 Male: 10 Healthy subject Female: 12 Male: 10 	38– 66 years	 Fasting and unstimulated saliva levels 5 min or 5 mL No medication details of patients' 	No change in salivary flow rate in all groups	NIDDM had no effect on the salivary flow rate	Aydin (2007)
 NIDDM^a with hypoglycemic, anti-hypertensive and anti- cholesterol medication Female: 12 Male: 33 Healthy subjects Female: 23 Male: 13 	20– 65 years	 Each patient attended an outpatient diabetes educational program Fasting blood glucose (FBS) Unstimulated whole saliva and citric acid-stimulated parotid saliva 	 NIDDM: Fasting blood sugar (FBS) ↑ No difference in unstimulated and stimulated salivary flow rate between all groups 	 NIDDM without xerogenic medication had no influence on salivary output Salivary flow rate was not changed following the change of FBS The glycemic control program did not affect the salivary flow rate 	Dodds and Dodds (1997)
Men • Study A • Impaired glucose tolerance (IGT): 10 • NIDDM: 10 • Control: 12 • Study B • NIDDM patients • Insulin treatment:15 • Anti-diabetic drugs: 9 • Control:12	59– 77 years	 Citric acid-stimulated parotid saliva collection at 0, 15, 30, 45, 60 and 120 min (interval 0.5–1 min) Patients in study A were not on any medication OGTT was used to determine NIDDM and IGT in study A HbA1C was used to determine treatment, either insulin or antidiabetic drug treatment, for the patients in study B 	 In study A, there was no change in salivary flow rate. In study B, there was no change in salivary flow rate between insulin-treated NIDDM patients and medication-treated NIDDM patients 	• NIDDM had no effect on stim- ulated salivary flow rates	(Borg Andersson et al., 1998)
 NIDDM: 45 Female: 13 HbA1C: 9.2 ± 2.2 Male: 32 HbA1C: 8.2 ± 1.9 Control: 86 Female: 45 Male: 32 	59–79 years	 The medication use in NIDDM and control subjects was recorded Unstimulated saliva was collected at 1 h after meal for 5 min Paraffin wax-stimulated whole saliva was collected for 5 min Deep breathing test (expiratory to inspiratory (E/I) ratio), E/I ≤ 1.10 indicates parasympathetic neuropathy Orthostatic test (systolic blood pressure change) SBP decreased more than 30 mmHg: indicates sympathetic neuropathy 	 Parasympathetic and sympathetic neuropathies were significantly higher in NIDDM patients No difference in unstimulated and stimulated salivary flow rate among groups An increase in the number of drugs used daily resulted in a decrease in both resting and stimulated flow rate in the control subjects, but not in NIDDM patients 	 The resting and stimulated saliva secretions were not different between the NIDDM patients and the control subjects NIDDM did not seem to affect salivary flow 	Meurman et al., (1998)
 Non-NIDDM: 38 Female: 20 Male: 18 NIDDM:35 Female: 17 Male: 18 	43– 45 ± 13 years	 Unstimulated whole saliva for 10 min Flow rate (mL/min) Salivary resistin (ng/mL) 	• No difference in salivary flow rate between groups	NIDDM had no effect on the salivary flow rate	Yin et al. (2012)
 Non-NIDDM Female: 14 Male: 9 Well-controlled NIDDM Female: 3 Male: 8 Poor-controlled NIDDM (HbA1C > 9%) Female: 10 Male: 8 	54– 90 years	 OGTT, HbA_{1c} Unstimulated whole saliva collection Unstimulated parotid saliva collection using Carlson-Crittenden cup Stimulated parotid saliva collection All current medication use were recorded 	 No differences in salivary flow rate between well-controlled NIDDM and non-NIDDM. Poor-controlled DM: ↓ salivary flow rate Taking xerostomia medication in well-controlled and poor-controlled NIDDM: ↓ salivary flow rate 	 Poorly-controlled DM could be associated with salivary dys- function Xerogenic medication acceler- ated a decrease in salivary flow rate in NIDDM 	Chavez et al., (2000)

Download English Version:

https://daneshyari.com/en/article/3120709

Download Persian Version:

https://daneshyari.com/article/3120709

Daneshyari.com