Craniosynostosis Syndromes

Carolyn Dicus Brookes, DMD, MD, Brent A. Golden, DDS, MD, Timothy A. Turvey, DDS*

KEYWORDS

• Craniofacial dysostosis • Craniosynostosis syndromes • Crouzon • Apert • Pfeiffer • Muenke

KEY POINTS

- Craniosynostosis syndromes have wide phenotypic variability. Understanding of the underlying genetic causes continues to develop.
- Children with these syndromes are best managed at a multidisciplinary craniofacial center.
- · Early management focuses on airway protection, preservation of vision and hearing, and feeding.
- Timing of craniofacial reconstruction is driven by growth and development of the area of interest.
- In the past, intellectual disability was assumed. However, many patients with craniofacial dysostosis syndromes live rich lives and have normal or even exceptional intellect provided they are raised in a nurturing, stimulating environment.

Craniosynostosis is premature fusion of cranial sutures, and it occurs in 1:2000 to 1:2500 live births. ^{1,2} Most cases are non-syndromic. Craniosynostosis syndromes, more than 150 of which have been identified, affect 1:25,000 to 1:100,000 infants. ^{2,3} The most common are reviewed in this article.

Craniosynostosis syndromes are diagnosed based on clinical features. Abnormal head shape and midface deficiency with exorbitism are typical craniofacial expressions, 1,2,4-6 and syndromes with these traits may be called craniofacial dysostosis syndromes. Limb and visceral manifestations further delineate each syndrome.

Fibroblast growth factor receptor (*FGFR*) and *TWIST* mutations are the most commonly associated with craniosynostosis syndromes. Although genotype-phenotype correlations have been characterized, phenotypically similar patients may have genetically distinct syndromes and identical mutations have been found in patients with different clinical diagnoses. ^{2,7,8} Fibroblast growth factors participate in myriad processes including skeletogenesis and limb development. Gain-of-function mutations in *FGFR1*, *FGFR2*, and *FGFR3* cause the *FGFR*-related craniosynostosis syndromes, which include Crouzon, Apert, Pfeiffer, Beare-Stevenson, Jackson-Weiss, and Muenke syndromes as well as Crouzon syndrome with acanthosis nigricans and *FGFR2*-related isolated coronal synostosis. These syndromes account for approximately 17% of craniosynostosis cases. ⁹

The authors have nothing to disclose.

Department of Oral & Maxillofacial Surgery, University of North Carolina-Chapel Hill, 149 Brauer Hall, CB #7450, Chapel Hill, NC 27599-7450, USA

* Corresponding author.

E-mail address: Tim_Turvey@unc.edu

Crouzon syndrome

Genetics

- FGFR2 mutations
- Autosomal dominant; complete penetrance, variable expressivity
 - o Occasionally de novo
- 1.6:100,000; 4.5% of craniosynostosis cases^{2,10}

Clinical features

Cardinal features:

- Craniosynostosis
- Midface/orbital hypoplasia
- Clinically normal hands/feet

Crouzon syndrome, like all craniofacial dysostosis syndromes, is classically characterized by premature fusion of the coronal and frontosphenoidal sutures and the sphenoethmoidal synchondrosis. ¹¹ Fusion results in brachycephaly; midface deficiency; and a short, wide anterior cranial base. The forehead is prominent because of compensatory growth at unaffected sutures. Additional sutures may be involved and rarely there is no sutural involvement (Fig. 1). ^{6,12,13}

Exophthalmos is always present, largely because of orbital hypoplasia with retruded supraorbital, infraorbital, and lateral orbital rims. The widened cranial base can result in hypertelorism. Most patients have exotropia; ¹⁴ orbital dystopia and strabismus can be observed. ¹⁵ Approximately 20% of patients develop optic atrophy. ¹⁴

Anteroposterior and vertical midface hypoplasia are consistent features. Dental crowding, crossbite, and apertognathia are typical. Cleft lip and palate are rare. ¹⁵

104 Dicus Brookes et al.

Fig. 1 Crouzon syndrome. Frontal views of a child with Crouzon syndrome. The only prior procedures performed were placement of PET and VP shunt. PET, pressure equalization tubes; VP, ventriculoperitoneal.

Other features

- Typically normal intellect
- Hydrocephalus (up to 30%); occasional nonprogressive ventriculomegaly^{16,17}
- Hearing loss common¹⁸
- Classically normal limbs/axial skeleton (occasional mild anomalies)^{19–23}
- Cardiovascular anomalies rare

Differential diagnosis

If choanal atresia is present, consider Crouzon syndrome with acanthosis nigricans. Apert, Pfeiffer, Jackson-Weiss, and Saethre-Chotzen syndromes are diagnostic considerations.⁶

Apert syndrome

Genetics

- FGFR2 mutations
 - Specific mutations linked to clinical features (ie, severe craniofacial involvement)²⁴
- Most are de novo
 - Sometimes autosomal dominant; complete penetrance.²
- 1:100,000; 4% to 5% of craniosynostosis cases^{2,25,26}

Clinical features

Cardinal features:

- Craniosynostosis
- Midface/orbital hypoplasia
- Bilateral syndactyly of hands/feet (minimally second to fourth digits)

Craniofacial anomalies are generally more severe in Apert than in Crouzon syndrome.¹³ Asymmetry frequently affects the cranial base, orbits, and midface.¹⁵ Megalencephaly is common.²⁷

Infants with Apert syndrome have bicoronal synostosis with a midline calvarial defect from glabella to the posterior fontanelle that predictably obliterates over time. 12,13 The anterior cranial base is short. Patients often have a flattened occiput and a wide, steep forehead. The skull is wide with temporal bulging; temporal fat pads are prominent (Fig. 2). 15,28

The orbits are hypoplastic; exophthalmos and hypertelorism are always observed. ¹⁴ Supraorbital and infraorbital rims are retruded. The lateral orbital wall is ballooned; lateral orbital rim projection is near normal. Palpebral fissures are often downslanting. ¹⁵ Exotropia, refractive errors, and strabismus are common; ¹⁴ optic atrophy is seen more in Crouzon syndrome. ^{29,30} Eyebrows may be interrupted over a bony defect at the lateral supraorbital rim. ¹⁵

The midface is retrusive. The nose is short with a depressed bridge and rounded tip. 15 Ears tend to be large and may be low set. 15,31

Lips are hypotonic.¹⁵ Lateral palatal swellings contain mucopolysaccharides and grow with age; the palate is highly arched.^{32,33} The soft palate is often long and thick.³³ Cleft palate is seen more than in Crouzon syndrome or the general population. Delayed and ectopic dental eruption are common. Most patients have dental crowding, crossbite, and apertognathia (Fig. 3).^{15,34,35}

Other manifestations

- Ventriculomegaly common; progressive hydrocephalus rare^{16,36}
- Mental retardation more common than in Crouzon syndrome

Download English Version:

https://daneshyari.com/en/article/3122446

Download Persian Version:

https://daneshyari.com/article/3122446

<u>Daneshyari.com</u>