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a b s t r a c t

An analytical solution for a rectangular opening in an infinite elastic medium subjected to far-field shear
stresses has been derived for drained and undrained loading conditions. A number of numerical simula-
tions has been conducted to determine the distortion of a rectangular structure in an infinite elastic med-
ium under far-field shear stresses also for drained and undrained conditions and when there is full slip or
no slip at the ground–structure interface. The results show that the shape of the opening has a minor
influence on the structure’s deformations and that full-slip conditions result in lower deformations.
Undrained conditions tend to reduce distortions when the structure is more flexible than the ground,
but tend to increase them for stiffer structures. A comparison between results obtained for a rectangular
lined opening and for a circular lined opening are presented, and show that deformations of a rectangular
structure with no-slip can be estimated from equations derived for a circular opening with an incom-
pressible liner and also with no-slip. The effects of flexibility, slip condition at the interface, and drained
or undrained loading are different for circular tunnels than for rectangular tunnels.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The difference between above-ground and below-ground struc-
tures subjected to earthquake loading is that structures placed on
the surface have a response determined by inertia forces and their
displacements can be significantly different from those imposed by
the ground. Design methods for aboveground structures typically
involve the application of pseudo static forces, which approximate
dynamic-induced forces. Underground structures however are
constrained by the surrounding ground and thus it is unlikely that
their displacements differ significantly from those of the ground.
Hence, their analysis should be based on the displacements im-
posed by the ground rather than on inertia loading.

There are two basic approaches in present seismic design. One
approach is to carry out dynamic, non-linear soil–structure inter-
action analysis using finite element or finite difference methods,
where inertia forces are included. The input motions in these anal-
yses are time histories emulating design response spectra. Input
motions are applied to the boundaries of a soil island to represent
propagating motion waves. In the second approach, the pseudo-
static approach, inertia forces are neglected. The earthquake load-
ing is simulated as a static far-field stress or strain applied to the
ground where the structure is embedded. Hendron and Fernández
(1983), Merritt et al. (1985) and Monsees and Merritt (1988)
showed that the dynamic amplification of stress waves impinging
on a tunnel is negligible when the rise time of the pulse is larger

than about two times the transit time of the pulse across the open-
ing; in other words, when the wave length of peak velocities is at
least eight times larger than the width of the opening. In these
cases the seismic load can be considered as a pseudo static load.
This is an important conclusion, which has been used to derive
simple analytical formulations for the seismic design of under-
ground structures. It is important to note that a pseudo static anal-
ysis may be used for tunnels placed far from the seismic source,
where frequencies of the ground motion are within the 0.1–
10 Hz range.

Most of the numerical and analytical work has been done on
underground structures assuming that during loading no excess
pore pressures are generated, i.e. assuming a drained condition.
While this is applicable to structures placed above the water table,
the assumption may not be correct when the structure is placed
below the groundwater table and is subjected to rapid loading. In
this situation excess pore pressures may be generated in the sur-
rounding ground, which do not dissipate during the loading event
because of the short duration. This situation would correspond to
undrained conditions.

This paper provides analytical and numerical results for deep
underground structures with circular and rectangular cross sec-
tions subjected to a far-field shear stress or strain in undrained
conditions. The results are compared with those obtained with
the assumption of drained conditions. It is assumed that quasi-sta-
tic loading approximates earthquake loading, with the understand-
ing that the wavelength of peak velocities is large and warrants
such assumption. It is also assumed that the ground and the liner,
when present, remain within their elastic regimes.
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2. Elasticity equations for undrained conditions

For the derivations, the following assumptions apply: (1) plane
strain conditions in a direction perpendicular to the cross section
of the tunnel; (2) the ground is either dry or fully saturated, homo-
geneous, and isotropic; (3) deformations of ground and liner re-
main within their respective elastic regimes; (4) the tunnel is
deep. Note that because of the assumption of deep tunnel, body
forces, e.g. gravity, can be neglected.

The solution of any elasticity problem must satisfy the equilib-
rium equations, the strain compatibility equations, and the bound-
ary conditions.

The equilibrium equations are:
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which are written, as they should, in total stresses. r0x, r0y, and sxy

are the cartesian effective normal and shear stresses, respectively;
u is the pore pressure and x and y are the cartesian coordinates. It
is assumed that the principle of effective stresses applies (e.g.
Terzaghi et al., 1996), i.e.:

r0x ¼ rx þ u

r0y ¼ ry þ u
ð2Þ

Note that Eq. (2) apply to ground with very compressible matrix
and incompressible pore fluid, which is typical of soils and soft
rocks. In the equation, tensile stresses are positive, compressive
stresses are negative and pore pressures are positive in compres-
sion. This notation is followed through the paper.

The compatibility equation, in plane strain, takes the form:
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where r2 is the Laplacian operator and m is the Poisson’s ratio. In
total stresses Eq. (3) is written as:
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or

r2ðr2/Þ ¼ �1� 2m
1� m

r2u ð5Þ

where / is the Airy stress function and is defined in cartesian coor-
dinates as (e.g. Timoshenko and Goodier, 1970)
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Pore pressures are governed by the following field equation:
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where K is the coefficient of permeability, cw is the unit weight of
water, and f is the change of fluid volume per unit volume of the
ground.

In general, mechanical-flow problems are coupled so Eqs. (5)
and (7) must be solved simultaneously. There are few cases how-
ever where the equations can be decoupled. The first case is for
dry ground, where pore pressures are zero. For this problem

Eq. (7) has the trivial solution u = 0 and Eq. (5) recovers the classi-
cal form (Timoshenko and Goodier, 1970). The second case is for
undrained, i.e. short-term, conditions. This situation is imposed
with f = 0; that is, there is no change of fluid in the ground. This
occurs in materials with low permeability, where loading induces
excess pore pressures at a rate much faster than the capability of
the ground to dissipate them. The third and final case is for long-
term conditions where all excess pore pressures have dissipated
and variables do no change with time. In this case d/dt = 0. All three
cases result in r2u = 0, and so they must obey the following
equation:

r2ðr2/Þ ¼ 0 ð8Þ

This is an important finding because it indicates that existing solu-
tions that satisfy (8) may also satisfy undrained conditions, i.e.
short-term analysis, provided that boundary conditions are satis-
fied. The constraint f = 0 or no change in volume, in elasticity and
given that the principle of effective stresses applies, requires:

r0x þ r0y ¼ 0 ð9Þ

which is then used to find pore pressures and effective stresses once
the total stresses are known, e.g. from (8), as follows:

r0x ¼ �r0y ¼
rx � ry

2

u ¼ �rx þ ry

2

ð10Þ

The Airy stress function has been successfully used to solve
problems on deep tunnels with circular cross section. For
rectangular cross sections, complex variable theory and conformal
mapping techniques have been preferred (Mindlin, 1940, 1948;
Muskhelishvili, 1954; Sokolnikoff, 1956; Theocaris and Petrou,
1989; Theocaris, 1991; Motok, 1997; Gerçek, 1991, 1997;
Exadaktylos and Stavropoulou, 2002; Exadaktylos et al., 2003; Huo
et al., 2006; Li and Wang, 2008). The fundamental theories of
complex variable and conformal mapping have been extensively
described by Muskhelishvili (1954), and later on by Savin (1961)
and Timoshenko and Goodier (1970). For circular tunnels the meth-
od has been very effectively used by Verruijt (1997, 1998); Strack
and Verruijt (2002).

According to complex function theory, any biharmonic function,
for example the Airy stress function / in Eq. (5), can be expressed
as:

/ ¼ Re½�zuðzÞ þ vðzÞ� ð11Þ

where z is a complex variable (z = x + iy; with i ¼
ffiffiffiffiffiffiffi
�1
p

) and �z is the
complex conjugate of z (�z ¼ x� iy);u(z) and wðzÞ ¼ v0 ¼ dvðzÞ

dz are two
analytic complex functions, also known as ‘‘complex potential func-
tions”. The stress components, for example in a cartesian coordinate
system, can be expressed in terms of the complex potentials as:

rx þ ry ¼ 2½u0ðzÞ þu0ðzÞ�
ry � rx þ 2is ¼ 2½�zu00ðzÞ þ w0ðzÞ�

ð12Þ

The displacements in plane strain are:

2GðUx þ iUyÞ ¼ ð3� 4mÞuðzÞ � zu0ðzÞ � wðzÞ ð13Þ

where Ux and Uy are horizontal and vertical displacements, respec-
tively; G is the shear modulus of the medium, G = E/[2(1 + m)] with E
the Young’s modulus and m the Poisson’s ratio.

For undrained conditions, given Eqs. (8)–(10), stresses and dis-
placements are obtained solving the following two sets of
equations:

22 A. Bobet / Tunnelling and Underground Space Technology 25 (2010) 21–31



Download English Version:

https://daneshyari.com/en/article/312635

Download Persian Version:

https://daneshyari.com/article/312635

Daneshyari.com

https://daneshyari.com/en/article/312635
https://daneshyari.com/article/312635
https://daneshyari.com

