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a b s t r a c t

The evolution equation of a drained aquifer during the consolidation process when time is transformed
into the Laplace variable is the modified Helmholtz equation. The governing equation of the steady state
of a heterogeneous aquifer which hydraulic conductivity when plotted against depth in a semi-log graph
has a constant slope is also the modified Helmhotlz equation. The same equation comes out when the
slopes of the hydraulic conductivity plotted against depth and against the hydraulic potential in a
semi-log graph are constants. The modified Helmholtz equation will be solved exactly considering a
semi-infinite aquifer drained by a circular tunnel. A unique state function, which according to the case
considered has different interpretations, is obtained in closed form as an infinite sum involving modified
Bessel functions. The amount of water that flows into the tunnel contrarily to the state function may
change from case to case and will be calculated exactly and in closed form for the different cited cases.
The analytic solution has a wide range of application, is valid for different cases, and within every case
needs being adapted to the particular problem to be solved. An illustrative application will show an adap-
tation of the solution to rock masses when the hydraulic conductivity plotted against the effective stress
in a semi-log graph has a constant slope. This will allow estimating the relative precision of approximated
formulae for the water inflow in fissured rock masses such as the Zhang and Franklin equation and the
first order approximation.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Tunneling science has grown during the computer age and has
not known the same intense analytic development that well and
drain theories have, as summarized by Cheng (2000). Muskat
(1937) obtained the exact analytic solution of a point source and
its image and deduced the water inflow equation, which was used
by Goodman et al. (1965) in model experiments. Rat (1973), Schle-
iss (1988), and Lei (1999) used and proved the exact analytic solu-
tion of the drained steady state of a semi-infinite homogeneous
aquifer considering a constant head on the tunnel edge. An exact
analytic solution that considers zero pressure on the tunnel edge
was presented at the world tunnel congress in Oslo (El Tani,
1999). An improved exact and compact solution that allows an
arbitrary pressure or potential on the tunnel edge was then ob-
tained using a Möbius transformation (El Tani, 2003). Complemen-
tary analytic developments, modifications for undersea tunnels
and calculations of seepage forces were undertaken by Kolymbas
and Wagner, 2007 and Park et al. (2008). All of these equations
are solutions of the same governing equation, which is the Laplace
equation. Deviating from steadiness or homogeneity makes the
governing and evolution equations deviate from the Laplace equa-

tion. Finding closed analytic solutions become a harder but not
impossible task. Zhang and Franklin (1993) obtained an exact ana-
lytic solution considering a point source and its image in a hetero-
geneous aquifer and deduced a water inflow equation for undersea
tunnels. To comply with the lack of analytic solutions for transient
flow, Perrochet (2005), Perrochet et al. (2007), and Hwang and Lu
(2007) adapted solutions that are used in well and heat theories
to construct models that predict water discharge during tunnel
driving.

A unique closed analytic solution that may be applied in many
different cases that involve a semi-infinite aquifer drained by a cir-
cular tunnel with an arbitrary pressure on the tunnel edge will be
presented. All of these cases have in common a unique governing
equation known as the modified Helmholtz equation. Four of these
are:

– The transient evolution of a homogenous aquifer during the con-
solidation process with constant hydraulic conductivity and
storage capacity.

– The steady state of a non-homogeneous aquifer where the
hydraulic conductivity decreases exponentially with depth; or
equivalently the slope of the hydraulic conductivity plotted
against depth on a semi-log graph is constant. An example is a
fractured rock mass with a decreasing number of fractures with
depth.
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– The steady state of a homogeneous aquifer where the hydraulic
conductivity changes exponentially with the effective stress to
the condition that total stress remains unchanged; or equiva-
lently the slope of the hydraulic conductivity plotted against
the hydraulic potential in a semi-log graph is constant since
the change of hydraulic potential is the same as that of the effec-
tive stress. An example is a fractured rock mass with closing fis-
sures and fractures with the increase of stress with depth.

– Zhang and Franklin (1993) found that combining the latter two
cases lead also to the modified Helmholtz equation and in this
case the hydraulic conductivity is the product of the correspond-
ing hydraulic conductivities.

It should be clear that for the mentioned cases the Helmholtz
governing equations appear only after some transformations. First,
the transformations should be clearly stated because the Helm-
holtz equation will act on a unique state function that has different
interpretation according to the cases considered. An integral solu-
tion to the Helmholtz modified equation considering a non-homo-
geneous aquifer was presented at the world tunnel congress in
Oslo in 1999 and used to obtain a first order approximation. Here
the complete exact closed form solution of the modified Helmholtz
equation will be derived from the integral solution. This needs
evaluating double integrals involving modified Bessel functions
that cannot be found in the specialized referenced monographs
and tables (Watson 1944; Abramowitz et al., 1972; Gradshteyn,
1996). The use of the analytic solution is straightforward only after
that the necessary transformations that change the governing and
evolution equations into the Helmholtz equation are clearly iden-
tified. There is an important preparation work to undertake before

than the analytic solution may be used. To ease the use of the ana-
lytic solution and the flow integrals, an application concerning a
drained rock mass where the hydraulic conductivity changes with
depth and with the effective stress will serve as example.

In tunneling, the water that flows from the soil or the rock mass
into the tunnel and the water that infiltrate from the surface
through the water table have to be controlled and monitored.
Many reasons may be evoked concerning tunnel construction,
maintenance and exploitation, but there are two important reasons
that affect the civilians. Drainage induces deformation that may
damage surface constructions (Lombardi, 1992) or creates water
shortage (Zhang, 1988). The amount of water flowing into the tun-
nel and the amount of water that is needed to recharge the aquifer
are important quantities that are integrals of the gradient of the
state function. These integrals, contrarily to the state function dif-
fer from case to case and will all be calculated exactly for every dif-
ferent case.

2. Evolution equations

A circular tunnel in an underground aquifer with a horizontal
water table and an undersea tunnel with a horizontal sea floor
are shown in Fig. 1. The tunnel edge Tx is a circle with center C
and radius rx. A circle Ty with center C and radius ry greater than
rx is also shown and will be used in the computation. The center
of the tunnel is on the vertical axis V and is at a distance h from
the horizontal axis H. The horizontal axis merges with the water
table for a tunnel in an underground aquifer and with sea floor
for an undersea tunnel.

Notations

Latin
a constant parameter
b constant parameter
b constant vector field
C tunnel center
Cmn matrix coefficient
H horizontal axis
h distance of the tunnel center to H
hwt distance of the tunnel center to the water table
hgs distance of the tunnel center to ground surface or sea

floor
In modified Bessel of the first kind of order n
Kn modified Bessel of the second kind of order n
S storage capacity or the inverse of the bulk modulus
K, K, k hydraulic conductivity
n exterior normal that points upwards on H and toward C

on Tx and Ty

O origin of the coordinate axis that lies on H
q Darcy’s velocity
Q water flowing through closed curve
Q0 first order approximation of the water inflow
QZF Zhang and Franklin water inflow
Qap approximated water inflow
r radius of the tunnel
rx, ry radius of the circle Tx, Ty

rx; rx� lengths of CX, CX*
ry; ry� lengths of CY, CY*
S storage capacity
Smn matrix coefficient
t time
Ty circle of radius ry and center C
Tx circle of radius rx and center C

x1, x2 horizontal and vertical coordinates
V vertical axis

Greek
D relative difference
Dmn modified Kronecker (D00 = 2, Dmm = 1 for m > 0,

Dmn=0 for m different to n)
d dirac delta distribution
hx; hx� angles OCX, OCX*
hy; hy� angles OCY, OCY*
b constant
hb angle of b with the vertical axis
cw water specific weight
cs, cd saturated, dry rock specific weight
X state function
u single layer
uc

n;us
n cosine and sine Fourier coefficients of u

w hydraulic head
g hydraulic potential on Ty

x state function on Ty

xc
n;xs

n cosine and sine Fourier coefficients of x
re effective stress
rt total stress
s Laplace variable

Operator and symbol
I Laplace operator
I�1 inverse Laplace operator
f ðsÞ Laplace transform of f(t)
b:x scalar product of b and x
r gradient operator
� belong to or is restricted to
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