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a  b  s  t  r  a  c  t

Although  the  discovery  of  light-activated  antimicrobial  agents  had been  reported  in the  1900s,  only  more
recently  research  work  has  been  developed  toward  the  use of  photodynamic  process  as  an  alternative
to  more  conventional  methods  of  inactivation  of micro(organisms).  The  photoprocess  causes  cell death
through  irreversible  oxidative  damage  by  reactive  oxygen  species  produced  by  the  interaction  between
a photosensitizing  compound  and  a light  source.

With  great  emphasis  on  the  environmental  area,  photodynamic  inactivation  (PDI)  has  been  tested  in
insect  eradication  and in  water  disinfection.  Lately,  other  studies  have  been  carried  out  concerning  its
possible  use  in  aquaculture  waters  or to the  control  of  food-borne  pathogens.  Other  potential  applications
of  PDI  in  household,  industrial  and hospital  settings  have  been  considered.

In the  last  decade,  scientific  research  in  this  area  has gained  importance  not  only  due  to  great  develop-
ments  in  the  field  of materials  chemistry  but also  because  of  the  serious  problem  of  the  increasing  number
of bacterial  species  resistant  to  common  antibiotics.  In  fact,  the  design  of  antimicrobial  surfaces  or  self-
cleaning  materials  is  a very  appealing  idea  from  the economic,  social  and  public  health  standpoints.  Thus,
PDI of  micro(organisms)  represents  a promising  alternative.

In  this  review,  the  efforts  made  in  the  last  decade  in  the  investigation  of PDI  of (micro)organisms
with  potential  applications  beyond  the  medical  field  will  be discussed,  focusing  on  porphyrins,  free or
immobilized  on  solid  supports,  as  photosensitizing  agents.

©  2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Photodynamic therapy refers to the use of a light source (visible
light of an appropriate wavelength), an oxidizing agent (molecular
oxygen, O2) and an intermediary agent (named photosensitizer, PS)
able to absorb and transfer the energy of the light source to molec-
ular oxygen leading to the formation of highly cytotoxic species
(singlet oxygen [1O2], hydrogen peroxide [H2O2], and/or free radi-
cals, such as superoxide [O2

−•] and hydroxyl radical [HO•]), causing
a multi-targeted damage and destruction of living tissues [1,2].
The generation of these reactive oxygen species (ROS) can occur
via two mechanisms or pathways, known as type I and type II,
which require the presence of O2 (Fig. 1). In the presence of light
(h�), the photosensitizer in the singlet ground state absorbs a pho-
ton, affording the excited singlet state. Then, it can lose energy by
returning to the singlet ground state with fluorescence emission
(F) or, through an intersystem crossing (ISC) process, it can be con-
verted in the long-lived triplet state. This excited triplet-state PS
can decay to ground state by phosphorescence emission (P) or can
react with a substrate, namely an electron donor molecule. In this
case the formation of radical ions can occur giving rise to radical
ions which react with ground state oxygen (3O2), originating ROS
(type I mechanism). Alternatively, the excited triplet-state PS can
transfer energy directly to molecular oxygen affording the excited
singlet state (1O2) (type II mechanism). Both photoprocesses may
occur simultaneously but type II is, in general, the predominant one.
The cytotoxic species can cause irreversible damage to proteins,
nucleic acids and lipids [3,4].

The advantage of being a process without a specific cell target
renders photodynamic inactivation (PDI) effective in the oxidation
of different biomolecules with the consequent destruction of sev-
eral cell types. In fact, this methodology has a broad spectrum of
activity and, using the same PS, is able to destroy human cells
[1], viruses [5], bacteria [6], molds [7], yeasts [8], protozoa [9],
helminths [10] and insects [11].

Moreover, the ability to structurally tailor the PS as well as to
successfully link it to other molecules, with a high degree of speci-
ficity (e.g., antibodies, enzymes, nucleic acids), or to solid supports
gives this therapy a multiplicity of clinical and non-clinical appli-
cations.

The discovery that positively charged PS could effectively
inactivate Gram-negative bacteria without the addition of perme-
abilizing agents [12,13] brought a new impetus to the investigation
on the PDI of microorganisms as a new therapeutic modal-
ity.

The difference in susceptibility between the two  types of bac-
teria, Gram-negative and Gram-positive, is explained on the basis
of the structural features of their cell wall (Fig. 2). Gram-positive
bacteria have a cell wall composed of lipoteichoic and teichoic
acids organized in multiple layers of peptidoglycan, which confers
a degree of porosity to bacteria so as to facilitate the anchoring
and entry of PS into the cell [14,15]. In Gram-negative bacte-
ria, the presence of a complex outer membrane in the cell wall,
consisting of phospholipids, lipopolysaccharides, lipoteichoic acids
and lipoproteins creates an impermeable barrier to antimicrobial
agents [14,15]. The interaction between the cationic PS and the
constituents of the Gram-negative cell wall generates electrostatic
interactions that promote destabilization of the native organiza-
tion of the wall, allowing the binding and eventual entry of the PS
molecules into the cell [14,15]. In the case of fungi, the cell wall
contains chitin, glucans and lipoproteins that represent a barrier
with intermediate permeability in comparison to Gram-positive
and Gram-negative bacteria [16]. With regard to viruses, enveloped
viruses are more easily inactivated than non-enveloped ones, but
some studies show that non-enveloped viruses can also be effi-
ciently inactivated by the phototoxic action of cationic PS [17],
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