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a b s t r a c t

The deformation modulus of rock masses (Em) is one of the significant parameters required to build
numerical models for many rock engineering projects, such as open pit mining and tunnel excavations.
In the past decades, a great number of empirical equations were proposed for the prediction of the rock
mass deformation modulus. Existing empirical equations were in general proposed using statistical tech-
nique and the reliability of the prediction relies on the quantity and quality of the data used. In this paper,
existing empirical equations using both the Rock Mass Rating (RMR) and the Geological Strength Index
(GSI) are compared and their prediction performances are assessed using published high quality in situ
data. Simplified empirical equations are proposed by adopting Gaussian function to fit the in situ data.
The proposed equations take the RMR and the deformation modulus of intact rock (Ei) as input parame-
ters. It has been demonstrated that the proposed equations fit well to the in situ data compared with the
existing equations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The deformation modulus (Em) is the most representative
parameter of the mechanical behavior of rock masses. It is widely
used in numerical modeling, such as finite element modeling, of
rock engineering projects where the analysis of displacement and
stress distribution are required to characterize the rock mass
behavior.

Commonly used approaches to estimate Em includes: laboratory
tests, in situ loading tests and prediction by empirical equations.
However, laboratory tests on limited size rock samples containing
discontinuities cannot measure reliably values of Em due to the
limitation of size of the testing equipment (Palmström, 1996).
In situ tests can provide direct information on the deformability
of rock masses, however, as Bieniawski (1973) noted, it is difficult
to rely on one in situ test alone as different results may be obtained
even in a fairly uniform and good quality rock mass condition.
Therefore, in order to obtain reliable results multi-tests are neces-
sary which are expensive and time consuming.

Due mainly to the above mentioned difficulties encountered in
laboratory and in situ testing, the estimation of Em values using
empirical equations becomes a very attractive and commonly ac-
cepted approach among rock engineers.

In the past decades, a great number of empirical equations were
proposed for the estimation of the isotropic rock mass deformation

modulus using various rock mass classification systems, such as
the Rock Mass Rating (RMR), the Geological Strength Index (GSI)
(see Table 1), the Tunneling Quality Index (Q) (Barton, 1987,
1996, 2002) and the Rock Mass Index (RMI) (Palmström, 1996;
Palmström and Singh, 2001). Other authors proposed equations
on the basis of parameters which define the quality of the rock
masses, such as the Rock Mass Quality Designation (RQD) (Zhang
and Einstein, 2004) and the Weathering Degree (WD) (Gokceoglu
et al., 2003; Kayabasi et al., 2003).

Existing empirical equations were in general derived using sta-
tistical methods, such as the regression analysis, and the reliability
of estimation of these equations depends on the quantity and qual-
ity of data used in the statistical analysis. As a consequence, large
discrepancies in the predicted values using different empirical
relations can be experienced which reduce the confidence in the
predicted values. For example, for a rock mass with the following
properties: GSI = 70, the disturbance factor, D = 0 and the intact
rock deformation modulus, Ei = 50 GPa, the values of Em calculated
from the empirical equations proposed by Carvalho (2004),
Sonmez et al. (2004) and Hoek and Diederichs (2006) (see Group
4 in Table 1) are 21.7 GPa, 25.6 GPa and 36.6 GPa, respectively.
Clearly the reliability of the prediction of these empirical equations
needs to be assessed.

In this research, existing empirical equations using the RMR and
the GSI classification systems are evaluated. The prediction perfor-
mance of these equations is tested by using high quality well pub-
licized in situ data from Bieniawski (1978), Serafim and Pereira
(1983) and Stephens and Banks (1989). These data are from high
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quality tests and are commonly acknowledged as reliable data
sources (Hoek and Diederichs, 2006). New simplified empirical
equations are proposed by adopting Gaussian function to fit these
in situ data. The proposed equations take the RMR classification
system and the deformation modulus of intact rock (Ei) as input
parameters. It has been demonstrated that the proposed equations
fit well to the mentioned in situ data compared with the existing
equations.

In this paper, the strategy of evaluation of existing equations for
predicting Em is described in Section 2. The performance of existing
equations using the RMR and GSI classification systems is assessed
in Section 3. The proposed simplified empirical relationships be-
tween Em and the RMR system are described in Section 4.

2. The strategy of evaluation of existing empirical equations

2.1. Category

In this research, we focus only on the empirical equations which
contain the RMR and GSI as input parameters. According to differ-
ent input parameters, the existing empirical equations using the
RMR and GSI classification systems can be divided into five groups
(see Table 1).

2.2. Testing data

In situ data from Bieniawski (1978), Serafim and Pereira (1983)
and Stephens and Banks (1989) are from high quality tests and are
commonly acknowledged as reliable data sources (Hoek and
Diederichs, 2006). These data also were widely used by many
researchers (Barton, 1996; Palmström and Singh, 2001; Sonmez
et al., 2006; Hoek and Diederichs, 2006) to assess the reliability
of their proposed equations. Therefore, in this research, 43 of the
76 sets of these data were used for assessing the prediction perfor-
mance of equations in Groups 1, 3 and 5. The other 33 sets of data
which contain Ei as input parameter were used to test the predic-
tion performance of equations in Groups 2 and 4.

These in situ data, however, are quantified on the basis of the
RMR classification system. In order to use these data to evaluate
the reliability of the empirical equations using the GSI system,
the relationship between RMR and GSI will have to be used to
transform RMR to GSI. Hoek and Diederichs (2006) suggested GSI
equal to RMR if the RMR data were obtained before 1990. There-

fore, for the in situ data which were collected before1989, the rela-
tionship of RMR = GSI is used in this research.

2.3. Indicators to assess the prediction performance of empirical
equations

The value of Root Mean Square Errors (RMSEs) (Eq. (1)) and
R-square (R2) (Eq. (2)) are adopted in this research as indicators
to assess the reliability of prediction by empirical equations:
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where N is the number of testing data used, Ei
m and Ei0

m are deforma-
tion modulus of rock masses obtained from the observed in situ data
and derived from the empirical equations respectively. Em is the
mean value of Em.

RMSE as defined is effectively the standard deviation of the er-
rors associated with the estimation if it is unbiased. Clearly, the
smaller the RMSE, the more reliable the estimation. The value of
R2 generally ranges from 0 to 1. For exact prediction, i.e., estima-
tion with no error, the value of R2 will be one. On the other hand,
R2 trends to zero for poor estimations. It should be noted that R2

can be negative if the quality of the estimation is extremely poor.

3. The evaluation of existing empirical equations

3.1. Relations between Em and RMR

Various attempts have been made to develop empirical equa-
tions taking the RMR as the input parameter to estimate Em. These
equations can be divided into two groups according to input vari-
ables as shown in Table 1.

3.1.1. Group 1 input parameter: RMR
The first empirical equation for predicting the rock mass defor-

mation modulus using the RMR system was proposed by Bieniawski
(1978), which was followed by other equations proposed by various

Table 1
Empirical equations using RMR and GSI for predicting Em.

Input parameters Empirical equations

Group 1 RMR Bieniawski (1978) Em = 2RMR � 100, RMR > 50
Serafim and Pereira (1983) Em = 10(RMR-10)/40

Mehrotra (1992) Em = 10(RMR-20)/38

Read et al. (1999) Em = 0.1(RMR/10)3

Group 2 RMR and Ei Nicholson and Bieniawski (1990) Em ¼ 0:01Eið0:0028RMR2 þ 0:9e
RMR

22:83Þ
Mitri et al. (1994) Em = Ei[0.5(1 � (cos (pRMR/100)))]
Sonmez et al. (2006) Em = Ei10((RMR-100)(100-RMR))/(4000exp(�RMR/100))

Group 3 GSI and D Hoek et al. (2002) Em ¼ ð1� 0:5DÞ10
GSI�10

40ð Þ;rci > 100 MPa
Hoek and Diederichs (2006) EmðMPaÞ ¼ 105 1�0:5D

1þeðð75þ25D�GSIÞ=11Þ

� �
Group 4 GSI, D and Ei Carvalho (2004) Em ¼ EiðsÞ0:25; s ¼ exp GSI�100

9�3D

� �
Sonmez et al. (2004) Em ¼ EiðsaÞ0:4; s ¼ exp GSI�100

9�3D

� �
a ¼ 0:5þ 1

6 ðe�GSI=15 � e�20=3Þ
Hoek and Diederichs (2006) Em ¼ Ei 0:02þ 1�0:5D

1þeðð60þ15D�GSIÞ=11Þ

� �
Group 5 GSI, D and rci Hoek and Brown (1997) Em ¼

ffiffiffiffiffiffi
rci
100

q
10

GSI�10
40ð Þ

Hoek et al. (2002) Em ¼ ð1� 0:5DÞ
ffiffiffiffiffiffi
rci
100

q
10

GSI�10
40ð Þ;rci 6 100 MPa

Beiki et al. (2010)
Em ¼ tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:56þ ðlnðGSIÞÞ2

q� � ffiffiffiffiffiffiffirci
3
p

246 J. Shen et al. / Tunnelling and Underground Space Technology 32 (2012) 245–250



Download English Version:

https://daneshyari.com/en/article/313149

Download Persian Version:

https://daneshyari.com/article/313149

Daneshyari.com

https://daneshyari.com/en/article/313149
https://daneshyari.com/article/313149
https://daneshyari.com

