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a  b  s  t  r  a  c  t

To  contribute  towards  designing  more  cost-efficient,  robust  and  flexible  downstream  processes  for  the
manufacture  of  monoclonal  antibodies  (mAbs),  a framework  consisting  of an evolutionary  multiobjective
optimization  algorithm  (EMOA)  linked  to  a biomanufacturing  process  economics  model  is  presented.  The
EMOA is  tuned  to discover  sequences  of chromatographic  purification  steps  and column  sizing  strate-
gies  that  provide  the  best  trade-off  with  respect  to multiple  objectives  including  cost  of  goods  per  gram
(COG/g),  robustness  in  COG/g,  and  impurity  removal  capabilities.  Additional  complexities  accounted  for
by the  framework  include  uncertainties  and constraints.  The  framework  is validated  on  industrially  rel-
evant  case  studies  varying  in upstream  and  downstream  processing  train  ratios,  annual  demands,  and
impurity  loads.  Results  obtained  by  the  framework  are  presented  using  a range  of  visualization  tools,  and
indicate  that the  performance  impact  of  uncertainty  is  a  function  of  both  the level  of  uncertainty  and
the  objective  being  optimized,  and  that  uncertainty  can cause  otherwise  optimal  processes  to  become
suboptimal.  The  optimal  purification  processes  discovered  outperform  the  industrial  standard  with,  e.g.
savings in  COG/g  of up  to 10%.  Guidelines  are  provided  for  choosing  an  optimal  purification  process  as  a
function  of  the  objectives  being  optimized  and  impurity  levels  present.

© 2014  Published  by  Elsevier  B.V.

1. Introduction

Among therapeutic biopharmaceutical drugs, monoclonal anti-
bodies (mAbs) represent one of the fastest growing category due
to their unique binding specificity to targets [1,2]. Over the past
decade, significant improvements have been accomplished in mAb
upstream processing (USP) with higher titres (beyond 5 g/L) [3]
being achieved in cell culture. However, these improvements have
not been matched in downstream processing (DSP) [4–6]. The goal
of this work is to contribute towards designing more cost-efficient,
robust and flexible downstream processes using a simulation and
optimization-based framework.

An antibody purification process consists typically of three chro-
matography steps, as depicted in Fig. 1. In two-thirds of the cases,
Protein A is used as the main capture step, followed by cation and
anion exchange chromatography [7]. With resin costs being already
one of the most significant contributors to purification costs [8,9]
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(and Protein A resin being over 30 times more expensive than
some ion exchange resins [10]), an increase in titres transforms
chromatographic operations to critical steps in a mAb  purifica-
tion process. The design of cost-effective purification processes can
help address this challenge [6]. The design stage is further compli-
cated by the fact that regulatory bodies expect biopharmaceutical
companies to fully understand their manufacturing process and
be able to establish a purification process that is robust and con-
forms to strict purity requirements [11]. To assist the process of
tackling these challenges, presented here is an optimization-based
framework linking an evolutionary multiobjective optimization
algorithm (EMOA) with a biomanufacturing process economics
model. The goal of the EMOA is to discover sequences of chromato-
graphic purification steps, and sizing strategies adopted at each
step, that provide the best trade-off with respect to multiple objec-
tives including cost of goods per gram (COG/g), robustness in COG/g,
and host cell protein (HCP) removal capabilities. The objectives are
then computed by the process economics model, which simulates
additional manufacturing challenges including uncertainties and
constraints.

Previous work on optimizing chromatographic purification
processes looked at, for example, reducing the number of chro-
matography steps employed [12,13], exploration of non-Protein
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Nomenclature

Indices
d decision variable
i, i′ chromatography step
j  objective function
t  Monte Carlo trial

Bioprocessing parameters
�b  bioreactor step size (L)
B maximum bioreactor size (L)
B minimum bioreactor size (L)
C total manufacturing costs (£)
di column diameter at chromatography step i (cm)
D annual demand (kg)
� robustness of a manufacturing process COG/g
hi column bed height at chromatography step i (cm)
HCPinitial HCP level pre purification∑

HCP LRV HCP log reduction of a chromatographic purifica-
tion process

HCP* HCP target post purification
HCPFinalt HCP level achieved post purification at Monte

Carlo trial t
k number of chromatography steps in a manufactur-

ing process
Mi mass of product entering chromatography step i (g)
nCYC,i number of cycles each column at chromatography

step i is used for
nCOL,i number of columns operating in parallel at chro-

matography step i
N number of Monte Carlo trials
p(meeting required purity) probability of meeting the target

HCP*
P annual product output (kg)
PTi processing time of chromatography step i (h)
ri resin used at chromatography step i
ri
i

Boolean variable indicating if ri is permitted to be
used at chromatography step i

rRT
i

resin type of ri
ri,Y yield of ri
ri,E eluate volume of ri
ri,DBC dynamic binding capacity of ri (g/L)
ri,HCP LRV HCP log reduction of ri
� average resin utilization across all chromatography

steps
titre product titre (g/L)
Vi volume of resin available at chromatography step i

(L)
Y theoretical global yield of a manufacturing process

Optimization algorithm parameters
fj objective function
F  objective space
g  generation counter
G maximum number of generations
H search history
l number of decision variables
m number of objective functions
� population size
� set of problem-specific factors controlling uncer-

tainties in the manufacture
S integer variable pointing to a feasible sequence of

chromatography steps

x solution vector
xd decision variable
X feasible search space

A based purification processes [10,14–16], and, similar to this
study, (intelligent) selection of chromatographic resins, potentially
coupled with the optimization of column sizing strategies and/or
operating conditions [17–24]. Some of these studies are based on
real physical experiments (e.g. [17,10,14]), while others involve
simulations only (e.g. [18,20,23,24]).

Different simulation-based frameworks have been applied to
purification process design including ones based on mathematical
programming [25–28], discrete-event simulation [29,30], and evo-
lutionary algorithms (EAs) [22–24]. The framework to be adopted
depends on the overall goal to be achieved, e.g. optimization vs
simulation.

Whilst evolutionary algorithms (EAs) have been applied suc-
cessfully to complex problems from different application areas [31],
within the bioprocess sector, EMOAs have received little attention
only. Previous work in chromatography design/optimization has
focused, e.g. on the application of EMOAs to operating parame-
ter tuning (e.g. column loading, flowrate and gradient length) of
a single chromatography step so as to improve recovery yield,
purity, and productivity [22]. The focus here is rather on optimi-
zing “high-level” criteria relating to all chromatography steps (e.g.
impurity removal capabilities and resin utilization) or the complete
manufacturing process (e.g. COG/g and its robustness). Moreover,
uncertainty is associated with global operating parameters includ-
ing product titre and HCP product levels pre-chromatography, as
well as with chromatography specific parameters, such as yield,
dynamic binding capacity (DBC), eluate volume, and HCP removal
capability. The goal is to utilize a variety of easy-to-understand
visualization tools to gain understanding about the impact of uncer-
tainty on manufacturing performance and trade-offs between the
objectives.

The rest of this paper is organized as follows. The next section
gives a detailed formulation of the framework including the uncer-
tain and multiobjective purification process design problem, and
the EMOA; the problem extends the single-objective problem con-
sidered in [23,24] with multiple objectives (some of which have
not been considered in the literature yet) and uncertainty. Section
3 describes a case study on the production of mAbs that will be used
to demonstrate the use of the framework. Section 4 presents and
discusses the results obtained for the case study. The concluding
section draws together the findings from the analyses and discusses
directions for further research.

2. Model formulation

Fig. 2 shows a schematic of the framework used in this work for
the design of antibody purification processes: an EMOA is used to
create solutions x (in this case, a particular purification process con-
sisting of a sequence of chromatographic resins and column sizing
strategies) and guide the optimization procedure. The string repre-
sentation of a purification process is encoded, and the purification
process embedded into a feasible manufacturing process, which
is then evaluated using a biomanufacturing process economics
model; manufacturing uncertainties are accounted for using Monte
Carlo (MC) trials. Objective values pertaining to x are recorded and
fed back to the EMOA to be considered in the generation of future
solutions.
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