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a b s t r a c t

During a plant life, light is necessary not only as a source of energy, but also as a regulatory factor of
plant metabolism with information signal function. In this review we consider basic links of primary
stages of light signal transduction in higher plants. The transformation circuits and possible pathways of
photoreceptor light signal transduction, as well as possible roles of photoreceptor-interacting proteins,
secondary messengers and some transcriptional factors are discussed. The review is also focused on
examination of rapid signaling events such as activation of ion exchange systems as well as interaction
of photoreceptors in signaling pathways.
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1. Introduction

Light is known to regulate almost all physiological and bio-
chemical processes in plants. Together with photosynthesis,
photomorphogenesis, phototaxis, phototropism, etc. play an impor-
tant role in vital activity of different plant species. These processes
are triggered by light and transformed into a cell response via a sys-
tem of transduction of the light signal [1–13]. The mechanisms and
components of these processes have not been adequately studied
in plant cells. This is primarily true for the rather fast first stages of
the light signal transduction chain, when light-induced proteins
have no time to be synthesized. The term “signal transduction”
became popular in the early 1980s, therefore the problem of light
signal transduction in plant cells belongs to a fairly new area of
biochemistry designated as “cell signaling”. In biology, signal trans-
duction refers to any process by which a cell converts one kind of
signal or stimulus into another. Most often, this involves ordered
sequences of biochemical reactions inside the cell that are carried
out by enzymes and linked through second messengers resulting in
what is thought of as a “second messenger pathway”. The concept
of “cell signaling” implies not only the signals’ transduction, but the
entire set of events connected to it, including signal multiplication,
depression, and suppression (or switching off) [4,8,11]. Such pro-
cesses are usually rapid, lasting on the order of milliseconds in the
case of ion flux, to minutes for the activation of protein and lipid
mediated kinase cascades. Thus, sensing both external and internal
environments at the cellular level relies on signal transduction.

Signal transduction usually involves the binding of small extra-
cellular signaling molecules to receptors that face outwards from
the plasma membrane and trigger events inside the cell. Between
them, steroids represent an example of extracellular signalling
molecules that may cross the plasma membrane due to their
lipophilic or hydrophobic nature [14].

Environmental stimuli may be both molecular in nature (as
above) or more physical, such as light absorbed by plant pho-
toreceptors. In this case light may affect photoreceptor molecules
localized in the whole cell. In that case, inner membranes are most
likely to be involved in the signal transduction chain, whereas the
receptors of the hormones are mainly located on the plasma mem-
brane.

Various effector proteins (the effectors), for example adenylate
cyclase (ADC) and GTP-binding proteins (G-proteins) are involved
in the transduction chain from receptors to subsequent compart-
ments of the cell. Activation of the effectors may be initiated
by the detachment of the �-subunit of the heterotrimeric G-
proteins. The activated G protein subunits can initiate the signaling
for many downstream effector proteins, including phosphodi-
esterases and adenylyl cyclases, phospholipases, and ion channels
that permit the release of second messenger molecules such as
cyclic nucleotides (cyclic guanosine 3′,5′-monophosphate—cGMP
and cyclic adenosine-3′,5′-monophosphate—cAMP), the compo-
nents of the phosphatidylinositol signaling system (inositol
1,4,5-triphosphate–IP3 and 1,2-diacylglycerol—DAG), as well as
Ca2+ [10,15–20]. The central position in the system of intracellu-
lar signalling is occupied by these three important messengers:
Ca2+, IP3 and DAG. The origin of the two last compounds merits
special notice. They are formed from the plasma membrane compo-
nent phosphatidyl-4,5-bisphosphate (PIP2) with the participation
of phosphoinositide-specific phospholipase C. Several reactive oxy-
gen species such as H2O2, O2

−, as well as NO, cADP-ribose and
nicotinamide adenine dinucleotide phosphate also belong to the
important family of secondary messengers.

The increasing concentration of free cytosolic Ca2+ is the most
widespread mechanism of transduction signaling chain indepen-
dently from the nature of various signals. In this case Ca2+-sensitive
proteins, in particular calmodulin (CaM) can be the targets of
free cytosolic calcium. A certain amount of evidence of the par-
ticipation of Ca2+, cAMP, cGMP, CaM, as well as G-proteins and
the components of the phosphatidylinositol signaling system in
the transduction of the phytochrome signal has been obtained
[7,10,11,19–25].

The activated receptors located in the plasma membrane trans-
mit the signal to the intracellular targets. If a target, or the effector
protein, is an enzyme, then the signal modulates its catalytic activ-
ity. If an ion channel serves as effector protein, then the conductivity
and lifetime of this channel is modulated. Nevertheless, it is impor-
tant to note that a small quantity of hormonal molecules or light
quanta, affecting the corresponding receptors, can produce a great
number of messenger molecules activating synthesis of several pro-
teins. The adenylate kinase system, catalyzing the formation of
cellular cAMP, functions in such manner [19,26]. In that case a sig-
nificant amplification of the signal is observed as a result of the
interaction of an external signal with a receptor. Another mecha-
nism of signal amplification involves regulation of the expression
of light-controlled genes.

A cell receptor involved in light signal transduction can interact
with different cell components. Hence, several signal transduction
pathways are possible. Second messengers such as Ca2+ and cyclic
nucleotides are involved in the most widespread pathways of sig-
nal transduction (Fig. 1). Some receptors can also activate directly
(without involvement of second messengers) protein kinases, for
example the enzyme tyrosine kinase, which phosphorylates the
residues of tyrosine in the proteins [27]. In this case a cascade of
cytosolic protein kinases is triggered. They phosphorylate various
proteins that cause subsequent physiological effects.

Regulation of gene expression can result from the transduc-
tion of signals of various natures. The signal can be transduced
into the cell nucleus by translocation of cytosolic protein kinases
or activating transcription factors. Transcription factors produced
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