

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/jasi

Original Article

Identification of functional SNPs in PAX3 gene and in silico analysis of damaging SNPs in relation to neural tube defect

Rashmi ^a, Royana Singh ^{a,*}, A.N. Gangopadhyay ^b, Anjali Rani ^c,
Mayank Shah ^d

^a Cytogenetics Unit, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

^b Department of Pediatrics Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

^c Department of Gynecology and Obstetrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

^d Ruhelkhand Dental College, Bareilly, India

ARTICLE INFO

Article history:

Received 1 October 2013

Accepted 27 January 2015

Available online xxx

Keywords:

Neural tube defect

paired box gene 3

mutation

gene

ABSTRACT

Introduction: PAX3 gene belongs to the class of transcription factor and has a significant role in neural tube development. There are a number of SNP which are associated with neural tube defect. Hence, we must sort functional SNP for a population study. To fulfill this goal data from dbSNP and literature review can be used.

Methods: In this study we analyzed the functional and structural impact of SNPs through computational prediction tool. A total of 8947 SNPs were observed from dbSNP in which SNP associated with neural tube defect having missense mutation is rs2234675. This nsSNP was found to be damaging by sequence homology based tool (Provean) and structural homology based tool (Polyphen). Modeling of wild and mutant protein structure were done using RMSD of wild and mutant protein structure were determined using Swiss PDB viewer and then the protein structure stability was determined using I-mutant 3.

Results: The nsSNP present in dbSNP i.e., rs2234675 was identified as deleterious, which lead to decrease in stability of PAX3 protein.

Discussion: A change of Thr315Lys, i.e. from polar neutral amino acid to polar basic amino acid showed a change in charge to positive and size of amino acid lead to change in structure. The modeled structure further, showed a decrease in stability. The result obtained from in silico study would open new prospect for association of PAX3 with neural tube defect.

Copyright © 2015, Anatomical Society of India. Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

Abbreviations: PAX, paired box; dbSNP, database single nucleotide polymorphism; nsSNP, non synonymous single nucleotide polymorphism.

* Corresponding author. Cytogenetics Unit, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

E-mail addresses: drroyanasingh@gmail.com, singhroyana@rediffmail.com (R. Singh).

<http://dx.doi.org/10.1016/j.jasi.2015.01.001>

0003-2778/Copyright © 2015, Anatomical Society of India. Published by Reed Elsevier India Pvt. Ltd. All rights reserved.

1. Introduction

Development of neural tube has been observed during 3rd week of pregnancy.¹ Any deformity in neural tube development would lead to neural tube defect. Neural tube defect is second common congenital malformation of birth defects. Neural tube defect can be classified into open neural tube defect (anencephaly, encephalocele, spina bifida) and closed neural tube defect (lipomyelomeningocele, lipomeningocele, and tethered cord). Epidemiological studies had leaded us to reveal that open neural tube defects are the most frequent in North India.² A study by Cherian shows an incidence of 6.57–8.21 per thousand live births in Balrampur District, UP.² Neural tube defect is polygenic and there is an interaction in between environmental and genetic factors determining the multifactorial nature.³ The candidate loci for neural tube defect are on chromosome number 2, 7 and 10^{4,5} however cytogenetics analysis revealed that trisomy of chromosome 13 and 18 have shown association with neural tube defect.⁶ The genes associated with neural tube defect may be associated with the process of neurulation and are involved in biochemical pathways like folic acid metabolism and glucose metabolism, genes based on cellular function and developmental genes. Developmental pathway involves Wnt pathway and Hedgehog pathway. Homeobox genes are involved in vertebrate development.⁷ PAX3 gene belongs to the class of transcription factor having a paired box domain (~128 amino acids long) and a unique DNA binding motif.^{8,9} A homeo-domain and an octapeptide chains are also present in PAX3.¹⁰ PAX3 is expressed in commissural neuron and restricts ventral patterning.¹¹ Genetic association studies can be tested for variation in gene sequence for their involvement in Neural tube defect. SNP detection is the most common form of genetic variation study. A Thr315Lys variation in exon6 of PAX3 has been associated with neural tube defect have been reported in dbSNP with rs2234675.¹² A study was done to screen novel PAX3 polymorphism associated with neural tube defect having 15, novel polymorphism in which only two SNPs were in exonic region with restriction site rs12623857 and rs28945092.¹³ This prompted us to focus on PAX3 gene leading to neural tube defects using bioinformatics tools to explore and extend the effect of SNPs on the stability and function of the PAX3 gene. The present study will be beneficial for understanding the role played by PAX3 gene and the genetic consequence of neural tube defect.

2. Methods

2.1. Data source

dbSNP, and literature survey were used to obtain the SNPs associated with PAX3 gene.¹⁴ A total of 8947 SNPs were retrieved on 22nd May 2014 for PAX3 gene. In dbSNP, polymorphic site Thr315Lys in exon6 with rs2234675 is found.¹² A study was done to screen novel polymorphism during the survey in dbSNP only two SNP present in exonic region were observed. The SNPs present in intronic region and UTR region

were not observed in dbSNP. SNPs present in exonic region were rs12623857 and rs28945092.¹³

2.2. Insilico analysis

Evaluation of functional significance of non synonymous SNP was done using a sequence homology tool Provean^{15,16} and functional impact of nsSNPs was done using a structural homology based tool Polyphen.¹⁷ After functional analysis modeling of nsSNPs on Protein Structures for PAX3 was done using 3we0A as template with resolution of 1.90Å in RCSB PDB using Pcons.net.¹⁸ and then calculation of their RMSD Difference was done using Swiss PDB viewer¹⁹ and UCSF chimera 1.5.1.²⁰ Then the change in stability was determined because of SNP using I mutant 3.0.²¹

3. Result

3.1. SNP dataset

Polymorphism data of the PAX3 gene associated with neural tube defect investigated in this paper was retrieved from the dbSNP (Table 1) and literature review.¹⁴ It contained about 8947 SNPs associated with PAX3 gene. Wei Lu, 2006 observed 15 novel SNPs with SNP ID rs28945096 (T/C), rs28945095 (C/T), rs28945094 (T/C), rs28945093 (A/C), rs28945092 (C/G), rs12623857 (T/C), rs28945091 (C/A), rs28945090 (G/A), rs28945089 (C/G), rs28945088 (C/G), rs28945087 (C/T), rs28945086 (T/C), rs16863657 (T/C), rs28945085 (C/G), rs28945094 (T/C), rs12623857 (T/C), and rs28945668 (C/T). Only two SNP with rs12623857 and rs28945092 in exonic region were present in dbSNP, the SNP in intronic and UTR region were not present. Hol et al; 1996 and Trembath et al; 1999 observed a polymorphic site in exon 6 from C → A with SNP ID rs2234675. The SNP observed showed Thr/Lys amino acid substitution at position 315 and is non-synonymous for neural tube defect.

3.2. Deleterious nsSNP prediction by Provean

The deleterious effect of nsSNP was identified by Provean (Table 2) which has a predefined score of –2.5. Below –2.5 the polymorphism is deleterious. The nsSNP has a predefined score of –2.601 and is observed to be deleterious.

Table 1 – nsSNPs and synonymous SNP identified by dbSNP.

SNP	Amino acid position	SNP type	Alleles	Amino acid change
rs12623857	43	Synonymous	T _[b] /C _[d]	G _[e] , G _[e]
rs28945092	52	Synonymous	C _[d] /G _[a]	P _[f] , P _[f]
rs2234675	315	Non	C _[d] /A _[c]	T _[g] , K _[h]
				Synonymous

[a]guanine, [b]thymine, [c] adenine, [d] cytosine [e] glycine, [f] proline, [g]threonine, [h] lysine.

Download English Version:

<https://daneshyari.com/en/article/3142154>

Download Persian Version:

<https://daneshyari.com/article/3142154>

[Daneshyari.com](https://daneshyari.com)