ELSEVIER Contents lists available at ScienceDirect ## Journal of Cranio-Maxillo-Facial Surgery journal homepage: www.jcmfs.com # Significance of distraction osteogenesis of the craniomaxillofacial skeleton — A clinical review after 10 years of experience with the technique Nicolai Adolphs ^{a,b,*}, Nicole Ernst ^{a,b}, Horst Menneking ^{a,b}, Bodo Hoffmeister ^{a,b} - ^a Klinik für Mund-, Kiefer- und Gesichtschirurgie, Zentrum für rekonstruktive und plastisch-ästhetische Gesichtschirurgie, Augustenburger Platz 1, Mittelallee 2 D-13353, Berlin, Germany - ^b Klinische Navigation und Robotik, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, Mittelallee 2 D-13353, Berlin, Germany #### ARTICLE INFO Article history: Paper received 1 August 2013 Accepted 3 January 2014 Keywords: Distraction osteogenesis Craniomaxillofacial skeleton Significance #### ABSTRACT Introduction: Distraction osteogenesis (DO) has been applied to the field of craniomaxillofacial surgery for more than two decades. Although relevant factors for successful distraction osteogenesis are well known there are ongoing controversies about indications and limitations of the method and there is still a lack of evidence based data. Since 2003 the principle of gradual lengthening has been applied to patients affected by different types of skeletal craniomaxillofacial deficiency within individualized treatment protocols at the Campus Virchow Klinikum — Charité Universitätsmedizin Berlin — by the same surgical team. The records of these patients were reviewed in order to assess the significance of the technique within the spectrum of a craniomaxillofacial department. During 10 years DO has been applied in 80 patients representing less than 1% of all patients that have been treated since 2003. Review of the protocols showed a heterogeneous group with a wide variance of parameters, the age ranging from 2½ to 51 years. Internal distraction devices were used in all cases and individually selected with respect to optimal stability during active distraction and consolidation phase. Although distraction related complications occurred the majority of procedures ended up with the favoured result and skeletal stability. However additional reconstructive surgery was required despite successful distraction in the majority of patients. Although DO has a low significance with respect to overall patient counts the method is a powerful tool within individual therapeutic concepts for the surgical correction of craniofacial anomalies that are characterized by skeletal deficiencies and should be seen as addendum to other surgical options. Predictable and stable results can be expected if the basic principles of the method are regarded. © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights #### 1. Introduction Distraction osteogenesis (DO) has been increasingly applied to the craniofacial skeleton since McCarthy reported about his experiences concerning the gradual lengthening of the human mandible in 1992 (McCarthy et al., 1992). Ilizarov who developed the technique initially in order to cure complicated fractures of the extremities systematically investigated and described the so called "tension stress effect" when gradual expansion of bone and surrounding tissues is effectuated under appropriate conditions and he finally refined the method for limb lengthening (Ilizarov, 1989a, b). However there have been already successful attempts to correct growth restrictions of the maxillofacial skeleton by comparable techniques considerably earlier (Honig et al., 2002). Preliminary experimental studies concerning mandibular lengthening have been published already in 1973 by Snyder et al., (1973). Although distraction osteogenesis nowadays has gained wide acceptance within the craniomaxillofacial community and is applied all over the craniofacial skeleton (McCarthy et al., 2001; Bell and Guerrero, ^{*} Corresponding author. Klinik für Mund-, Kiefer- und Gesichtschirurgie, Zentrum für rekonstruktive und plastisch-ästhetische Gesichtschirurgie, Augustenburger Platz 1, Mittelallee 2, D-13353 Berlin, Germany. Tel.: +49 30450555022; fax: +49 30450555901. $[\]begin{tabular}{ll} \it E-mail & \it addresses: & nicolai.adolphs@charite.de, & n_adolphs@hotmail.com \\ (N.~Adolphs). \end{tabular}$ | Region | Pathology
/ Indication | Type of DO | Number of procedures (n=87) | Growing
skeleton | Internal device | Consolidation
time | DO-Length | Follow up
(months) | Stability | Additional surgeries | Patients assessment
Would you do it
again ? | Surgeons
assessment
Would we do it
again ? | Comments | |------------------------------------|---|-----------------------------|--|---------------------|---|-----------------------|-----------|-----------------------|---|----------------------|---|---|--| | Craniofacial & Midfacial DO (n=70) | Midfacial
retrusion in
Craniofacial
Dysostosis | Frontofacial
Advancement | 5 | 5 | 1x Synthes
1x KLS Riediger
3x KLS Marchac | > 6 months | ++ | > 24 | ++ | + | 4x++
1x(-)
severe soft tissue
infection | 4x++
1x(-) | Residual
growth
Staged
surgery | | | Anophtalmia
Tessier 4 cleft | Orbita | 4 | 4 | Osmed Sphere | > 6 months | ++ | < 24 | ++ | + | ++ | ++ | Residual
growth
Staged
surgery | | | Median
Craniofacial Cleft
Syndrome | Nasal dorsum | 1 | | KLS Track 1+ 15mm | > 6 months | ++ | <12 | promising | + | ++ | ++ | Staged
surgery | | | Transverse
maxillary
deficit | TPD – bone borne | 43
34 regular
5 unilat.LeFort I
4 pediatric TPD | 4 | 1x Titamed
41x Surgitec | > 6 months | ++ | > 24 | ++ | + | ++ | ++ | Secondary
orthognathic
surgery | | | Transverse
maxillary
deficit | Hyrax- tooth
borne | 12
1 pediatric Hyrax | 1 | custom
dental born devices | > 6 months | ++ | > 24 | ++ | + | ++ | ++ | Secondary
orthognathic
surgery | | | Maxillary
Retrusion
(BCLP) | Le Fort I | 2 | 1 | KLS-Zürich ped max
Distractor | 6 months | ++ | > 24 | + | + | ++ | ++ | 1xresidual
growth
2x staged
surgery | | | Deficiency of premaxilla | Maxillary segment | 2 | ē | Medartis Modus 2.0 | 6 months | ++ | < 12 | promising | + | ++ | ++ | Additional surgeries | | | Posttraumatic
defect | Alveolar crest | 1 | • | 1x KLS Microtrack | 3 months | + | > 12 | - | - | | | Compliance &
management
problem | | Mandibular
DO
(n=17) | Postoperative
defects after
ablative surgery | Alveolar crest | 6 | - | 6x Medartis Modus
1.5 | 6 months | ++ | > 60 | ** | + | + | + | Very complex
&
time
consuming
approach | | | Orthognathic
(Crowding) | Symphysis | 2 | 1 | 1x Medartis Modus
1x Surgitec | 6 months | ++ | > 24 | ++ | + | ++ | ++ | Secondary
orthognathic
surgery | | | Unilateral mandib.
Hypoplasia/Crani
of Microsomia | Ramus unilateral | 6 | 4 | 6x Medartis Modus
Modular 1,5/2.0 | 6 months | +- | > 24 | +- | + | + | +- | Additional
reconstructive
surgery | | | Syndromal
deficiency
(TCS) | Ramus bilateral | 1 | 1 | Synthes CMF
Distraktor | > 6 months | ++ | > 24 | +
(partial
condylar
remodelling
) | + | ++ | ++
CPAP off post DO | Additional reconstructive surgery | | | Syndromal
deficiency
(TCS) | Corpus mand. | 2 | 2 | Medartis Modus 2.0 | > 6 months | ++ | > 12 | ++ | + | ++ | ++ | Additional reconstructive surgery | **Fig. 1.** Distribution and assessment of distraction procedures 2003-2013 (n=87 distraction procedures in 80 patients). ### Download English Version: # https://daneshyari.com/en/article/3143323 Download Persian Version: https://daneshyari.com/article/3143323 <u>Daneshyari.com</u>