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a  b  s  t  r  a  c  t

Hydrogen  gas  is chemical  fuel  with  high  energy  density,  and  represents  a clean,  renewable  and  carbon-
free  burning  fuel,  which  has  the  potential  to solve  the  more  and  more  urgent  energy crisis  in  today’s
society.  Inspired  by natural  photosynthesis,  artificial  photosynthesis  to  generate  hydrogen  energy  has
attracted  a lot of attentions  in  the  field  of  chemistry,  physics  and  material.  Photoelectrochemical  water
splitting  based  on  semiconductors  represents  a  green  and  low  cost  method  to generate  hydrogen  fuel.
However,  solar  to hydrogen  conversion  efficiency  is quite  low,  due  to some  intrinsic  limitations  such as
bandgap, diffusion  distance,  carrier  lifetime  and  photostability  of  semiconductors.  Although  nanostruc-
tured  photoelectrodes  improve  the  photoelectrochemical  water  splitting  performance  to  some  extent,  by
increasing  electrolyte  accessible  area  and  shortening  minority  carrier  diffusion  distance,  nanostructure
engineering  cannot  change  their  intrinsic  electronic  properties.  More  importantly,  recent  development  in
chemically  modification  of  nanostructured  electrodes,  including  surface  modification  with  catalyst  and
plasmonic  metallic  structures,  element  doping  and  incorporation  of functional  heterojunctions,  have
led to  significant  enhancements  in  the  efficiencies  of  charge  separation,  transport,  collection  and  solar
energy  harvesting.  In  this  review,  we  provide  an  overview  of the  recent  process  in photoelectrochemical
water  splitting  by  using  chemically  modified  nanostructured  photoelectrodes.  Finally,  we also  discuss
the  current  challenges  and future  opportunities  in  the  area  of  photoelectrochemical  water  splitting.
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1. Introduction to photoelectrochemical water splitting

With the ever-growing of global population, there is a con-
tinuously increasing energy demand. Renewable solar energy is
believed to be a potential solution to energy sustainability. How-
ever, the intermittent solar irradiation poses a new challenge for
solar energy utilization. To obtain continuous and stable power
supply, it requires efficient and cost effective methods to store
the excess energy generated in daytime. One of the most attrac-
tive ways is storing solar energy in the form of chemical fuels, such
as alcohols and hydrogen gas. Inspired by natural photosynthesis,
research efforts have been devoted to mimic  this process by using
photoactive materials. One of the major directions is hydrogen gen-
eration via photoelectrochemical (PEC) water splitting.

1.1. Principle of PEC water splitting

Water cannot be directly decomposed by light, because it
is transparent to visible light, but only with the irradiation
wavelength shorter than 190 nm (deep ultraviolet light) [1]. For
electrochemical water electrolysis, a minimum voltage of 1.23 V is
required to split water. This voltage is equivalent to the energy
irradiance with a wavelength of ∼1000 nm.  Therefore, if solar
energy can be effectively used in the electrochemical system, water
splitting can be achieved under visible light irradiation. The first
artificial photosynthesis of generating H2 by water splitting was
demonstrated by Honda and Fujishima in 1972, using semiconduc-
tor titanium dioxide (TiO2) as photoanode in a PEC cell [1]. Fig. 1
shows the configuration of PEC cell with n-type semiconductor
TiO2 photoanode and a Pt counter electrode. When the semicon-
ductor is contacted with the electrolyte, the charge transfer occurs
at the interface between semiconductor and electrolyte, and lead-
ing to surface charging. As a result, electronic bands bend upward.
The potential barrier created by the band bending is known as
Helmholtz barrier, which depends on the nature of the aqueous
electrolyte and the semiconductor electrode [2]. This interfacial
potential barrier could facilitate the separation of electron and hole
pairs, which can be photogenerated when TiO2 photoelectrode is
irradiated with light with photon energy larger than or equal to its
band gap. The photoexcited electrons transfer to Pt counter elec-
trode and reduce water to generate H2, while holes diffuse to the
surface of TiO2 and oxidize water to form O2 [2–5]. The reaction
equations on each electrode are shown in the following:

Photoanode : H2O + 2h+ → 2H+ + 1/2O2 E◦
ox = −1.23 V

Cathode : 2H+ + 2e− → H2 E◦
red = 0 V

According to the Nernst equation, water electrolysis requires a
minimum energy of 1.23 V. To gain the required electrochemical
energy, the photoelectrode must absorb light with photon energy
larger than 1.23 eV. Fig. 2 shows the solar energy spectrum plot
as a function of number of photons and radiation energy [2]. The-
oretically, the minimum energy required for PEC water splitting
is 1.23 eV. However, in practice, photons with energy larger than
the theoretical limit is needed due to the energy loss during PEC
water splitting. The energy losses include electron-hole recombi-
nation, voltage losses at the contacts, and the potential loss due to

Fig. 1. Photoelectrochemical water splitting cell based on n-type semiconductor
TiO2 photoanode.

Reproduced with permission from Ref. [7].
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