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Abstract
Introduction: Bioinformatics has emerged as an impor-
tant tool to analyze the large amount of data generated
by research in different diseases. In this study, gene
expression for radicular cysts (RCs) and periapical granu-
lomas (PGs) was characterized based on a leader gene
approach. Methods: A validated bioinformatics algo-
rithm was applied to identify leader genes for RCs and
PGs. Genes related to RCs and PGs were first identified
in PubMed, GenBank, GeneAtlas, and GeneCards data-
bases. The Web-available STRING software (The Euro-
pean Molecular Biology Laboratory [EMBL], Heidelberg,
Baden-W€urttemberg, Germany) was used in order to
build the interaction map among the identified genes
by a significance score named weighted number of links.
Based on the weighted number of links, genes were clus-
tered using k-means. The genes in the highest cluster
were considered leader genes. Multilayer perceptron neu-
ral network analysis was used as a complementary sup-
plement for gene classification. Results: For RCs, the
suggested leader genes were TP53 and EP300, whereas
PGs were associated with IL2RG, CCL2, CCL4, CCL5,
CCR1, CCR3, and CCR5 genes. Conclusions: Our data
revealed different gene expression for RCs and PGs, sug-
gesting that not only the inflammatory nature but also
other biological processes might differentiate RCs and
PGs. (J Endod 2015;41:877–883)
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Inflammatory chronic apical lesions (ICALs) are associated with endodontically
involved teeth (1). It has been accepted that the bacterial presence/colonization of

the root canal space is the main etiologic factor of ICALs (2, 3). Moreover, host
responses such as inflammation (4), angiogenesis (5), and, consequently, bone
resorption (1) could modify the severity and prognoses of ICALs. Differential diagnosis
among all ICALs is possible only with histopathological examination (6). Moreover, it
was suggested that radiographic diagnosis of ICALs should not be used for scientific
investigations (7).

Because root canal debridement is the first choice treatment of ICALs (8, 9), most
ICALs are impossible to distinguish among radicular cysts (RCs) or periapical
granulomas (PGs) (10). Interestingly, there is a discrepancy related to the sample sizes
of studies that consider only radiographic examination (8, 11) and studies with tissue
sample analyses (2, 4, 5,12–15). The reduction of ICAL specimens for analyses can
represent important bias to elucidate ICAL pathology (16).

As in several diseases, ICAL has been related to many forms of controlling gene
expression (4, 5,17–19). However, most of these studies focused on isolated genes
or metabolic pathways. Bioinformatics has emerged as an important tool for
analyses of a plethora of data generated (20–22). Recently, the leader gene
approach gave promising results in the context of oral lichen planus (21) and chronic
inflammatory periodontitis (20). Genes belonging to the highest rank are defined as
leader genes, which are relevant genes in a given cellular process, according to the
already available experimental data. The purpose of this study was to characterize
the gene expression of RCs and PGs by bioinformatics, interaction network analysis,
and neural networks.

Materials and Methods
Bioinformatics and Interaction Network Analysis

The leader gene approach was described previously (20–23). Briefly, key genes
involved in RCs or PGs were identified by a search of large-scale gene databases. To deter-
mine the primary set of genes, a search considering only human genes was performed on
the following databases: PubMed, GenBank, GeneAtlas (22), and GeneCards (24). The
gene nomenclature adopted was defined by the Human Genome Organization. Only in-
teractions based on experimental observations described in the public domain and
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available in specific databases were considered with a high degree of con-
fidence (above 0.9; range, 0–0.99) (20–23). With this process, new
genes directly linked to RCs and PGs could be identified. Literature
data from PubMed, GenBank, GeneAtlas, and GeneCards was performed
using a string of pertinent key words chosen by experts; Medical Subject
Headings were used to carefully check terms and all their possible Bool-
ean logics–based combinations to avoid false-positive data. After this
step, a list of potential ‘‘candidate genes’’ related to RCs or PGs was gener-
ated. The initial gene list for RCs and PGs was then expanded using the
Web-available software STRING (version 9.05) (The European Molecu-
lar Biology Laboratory [EMBL], Heidelberg, Baden-W€urttemberg, Ger-
many) (25, 26). The STRING software was used to score each
interaction to build the interaction map among the identified genes.
For every gene identified, we summed combined association scores
and adjusted, multiplying to 1000 (20–23), to obtain a single score
named weighted number of links (WNL). Based on the WNL, genes
were clustered using k-means. Leader genes had the highest rank, and
the other genes were termed in a decreased alphabetical way
according to their WNL score. Genes with no interactions were defined
as orphan genes (21, 23). To evaluate differences among various
classes in terms of WNL, analysis of variance (ANOVA) and Tukey-
Kramer post hoc tests were used. Statistical significance was set at a P
value <.001. Interacting genes were classified as up-regulated, down-
regulated, or neutral in respect to RC or PG pathogenesis. Genes that
did not exhibit fold expression changes in the disease versus health con-
trol condition or genes for which there is no universal consensus in the
literature or databases were considered neutral genes. Topologic analysis
was performedwith Cytoscape (SanDiego, CA) (27) and FANMOD (Jena,
Thuringia, German) (28), whereas ontologic analysis was performed
with Biological Networks Gene Ontology tool (BiNGO) (20–23, 29).
Human periodontal ligament cell analyses were also performed and
are shown in Supplemental Figure S1 (Supplemental Figure S1 is avail-
able online at www.jendodon.com).

Neural Networks
An alternative approach for gene classification inspired by the

configuration of the human brain involves the use of neural networks.
In this approach, the multilayer perceptron (MLP) neural network was
used for gene classification (30–32) as a complementary supplement to
the methodology described previously. MLP is 1 specific feedforward
network with 1 or more layers between the input and output
nodes (hidden layers). Training is achieved of MLP by the
backpropagation algorithm (33). Training is achieved of MLP by the
back propagation algorithm (30, 33):

1. Initialization: Assume that no prior information is available and
pick the synaptic weights and thresholds, u

ðlÞ
ji ðnÞ, from a uniform

distribution whose mean 0 and whose variance is chosen to make
the standard deviation of induced local fields of the neurons lie at
the transition between the linear and saturated parts of the activation
function, 4.

2. Presentation of training examples: Present the neural net with an
epoch of training examples. For each example in the set
fðxðnÞ; dðnÞÞgNn¼1, ordered in some fashion, perform the
sequence of forward and backward computations described under
points 3 and 4, respectively.

3. Forward computation: Let a training example in the epoch be
denoted by (x (n), d (n)), with the input vector x (n) applied to
the input layer of sensory nodes and the desired response vector
d (n) presented to the output layer of computation nodes. Compute
the induced local field and function signals of the neural net by pro-

ceeding forward through the net, layer by layer. The induced local

field v
ðlÞ
j ðnÞ for neuron j in layer l is

v
ðlÞ
j ðnÞ ¼

Xm0

i¼0

u
ðlÞ
ji ðnÞyðl�1Þ

i ðnÞ

where y
ðl�1Þ
i ðnÞ is the output (function) signal of neuron i in the pre-

vious layer (l� 1) at iteration n and u
ðlÞ
ji ðnÞ is the synaptic weight of

neuron j in layer l that is fed from neuron i in layer (l�1). For i= 0, we

have y
ðp�1Þ
0 ðnÞ ¼ þ1 and u

ðlÞ
j0 ðnÞ ¼ b

ðlÞ
j is the bias applied to

neuron j in layer l. The output signal of neuron j in layer l is

y
ðlÞ
j ¼ 4j

�
vjðnÞ

�

If neuron j in the first hidden layer (ie, l = 1), set

y
ð0Þ
j ðnÞ ¼ xjðnÞ

where xjðnÞ is the jth element of the input vector x (n). If neuron j is in
the output layer (ie, l= L, where L is the number of network layers), set

y
ðLÞ
j ¼ ojðnÞ

Compute the error signal

ejðnÞ ¼ djðnÞ � ojðnÞ

where djðnÞ is the jth element of the desired output vector d (n).
4. Backward computation: Compute the ds (ie, local gradients) of

the neural net defined by

d
ðlÞ
j ðnÞ ¼

2
4

e
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j
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d
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where the prime in 4
0
jð:Þ denotes differentiation with respect to the

argument. Adjust the synaptic weights of the neural net in layer l accord-
ing to the following generalized delta rule (34, 35):

u
ðlÞ
ji ðnþ 1Þ ¼ u

ðlÞ
ji ðnÞ þ a

h
u

ðlÞ
ji ðn� 1Þ

i
þ hd

ðlÞ
j ðnÞyðl�1Þ

j ðnÞ

where h is the learning rate and a is the momentum constant.

5. Iteration: Iterate the forward and backward computations under
points 3 and 4 by presenting new epochs of training examples to
the neural net until the stopping criterion is met.

Results
Bioinformatics and Interaction Networks

Considering RCs, the preliminary query in GeneCards suggested 25
genes. It was performed as an expansion on STRING, and 10 genes were
included (Fig. 1). For RCs, the suggested leader genes were TP53 and
EP300 (Fig. 2D). The difference in WNL scores between the leader
genes related to RCs was confirmed by ANOVA with the Tukey post
hoc test (P < .001). The network for RCs also exhibits a power law
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