

Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial

www.elsevier.pt/spemd

Investigação

Influência da posição e tempo de irradiação sobre a capacidade de desinfecção em forno de micro-ondas

Ana Carolina Mascarenhas Oliveira^{a,*}, Lígia Antunes Pereira Pinelli^b e Regina Helena Barbosa Tavares da Silva^b

- ^a Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP/UNICAMP), Brasil
- ^b Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista (FOAr/UNESP), Brasil

INFORMAÇÃO SOBRE O ARTIGO

Historial do artigo:

Recebido a 21 de dezembro de 2011 Aceite a 26 de fevereiro de 2012 On-line a 4 de maio de 2012

Palavras-chave: Micro-ondas Bacillus subtilis Desinfecção

RESUMO

Objetivo: Avaliar as variações de temperatura dentro de 2 modelos de fornos de micro-ondas domésticos de única (F_1) e dupla emissão de ondas (F_2) , a fim de investigar áreas de maior e menor intensidade do campo eletromagnético.

Materiais e métodos: Um béquer com água ($60\,\mathrm{mL}$, $26\,^{\circ}\mathrm{C}$) foi irradiado em uma das 5 posições (anterior - P_1 , látero-direita - P_2 , posterior - P_3 , látero-esquerda - P_4 e central - P_5) em cada forno ($900\,\mathrm{W/2\,min}$). Na segunda etapa, avaliou-se a efetividade do processo de desinfeção em F_2 , utilizando uma suspensão de Bacillus subtilis em cada uma das 5 posições pelos períodos de 2, 4 e 6 minutos de irradiação. Os dados foram submetidos ao teste estatístico de Kruskal-Wallis e comparações múltiplas não-paramétricas, em nível de significância de 5%.

Resultados: Os níveis médios de temperatura obtidos foram: $F_1 = 84,80\,^{\circ}$ C; $F_2 = 92,01\,^{\circ}$ C. Para F_1 , observou-se que as posições P_1 , P_2 , P_3 e P_5 apresentaram valores semelhantes entre si e superiores a P_4 ; enquanto que para F_2 se observou que P_1 , P_2 e P_4 foram similares entre si e superiores a P_3 e P_5 , tendo o teste de Kruskal-Wallis apontado essas diferenças como significativas (p < 0,05). Observou-se que P_2 promoveu morte bacteriana a partir de 4 min de irradiação, enquanto que nas demais posições só houve desinfeção com 6 min de irradiação. Conclusão: Os protocolos de posição e tempo indicados para os diversos processamentos em fornos de micro-ondas podem ser diferentes de acordo com as características de cada aparelho devido à heterogeneidade do campo eletromagnético.

© 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária. Publicado por Elsevier España, S.L. Todos os direitos reservados.

^{*} Autor para correspondência.

Influence of the position and irradiation time on the ability of disinfection in microwave oven

ABSTRACT

Keywords:
Microwaves
Bacillus subtilis
Disinfection

Objective: To evaluate the variations of temperature in 2 models of domestic micro-wave ovens, single emission (F_1) and dual emission of waves (F_2) , to investigate areas of higher and lower intensity of the electromagnetic field.

Materials and methods: A beaker containing water (60 mL, $26\,^{\circ}$ C) was irradiated into each of 5 positions (front - P_1 ; right - P_2 ; posterior - P_3 ; left - P_4 ; central - P_5) within each oven (900 W/ 2 min). To evaluate the effectiveness of disinfection in P_2 , Bacillus subtilis suspension was irradiated in each of the 5 positions for 2, 4 and 6 minutes. Data were analyzed by Kruskal-Wallis and nonparametric multiple comparisons at 5% significance level.

Results: 84.80 °C (F_1) and 92.01 °C (F_2) were mean levels of temperature. For F_1 , the positions P_1 , P_2 , P_3 and P_5 showed similar values among them and upper than P_4 , while for F_2 , the positions P_1 , P_2 and P_4 were similar among them and upper than P_3 and P_5 . Kruskal-Wallis test found significant differences between positions and models of ovens (p<0.05). It was observed that P_2 promoted bacterial death from 4 min of irradiation, while the other positions promoted disinfection at 6 min of irradiation.

Conclusion: The protocols of position and time specified for the various procedures in microwave ovens can be different according to the characteristics of each device due to the electromagnetic field heterogeneity.

© 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária. Published by Elsevier España, S.L. All rights reserved.

Introdução

O forno de micro-ondas tem sido utilizado na desinfeção e esterilização de materiais utilizados em laboratórios de microbiologia¹⁻⁴, lentes de contacto⁵ e alimentos⁶. As aplicações da irradiação por micro-ondas em laboratórios de histologia e patologia têm crescido consideravelmente, sendo utilizada em colorações histoquímicas e imuno-histoquímicas para microscopia de luz e na aceleração das etapas de fixação, processamento e desmineralização de tecidos^{7,8}.

No combate à infeção cruzada, os fornos de micro-ondas possuem potencial importância^{3,9}, sendo sua aplicação em laboratórios e consultórios odontológicos avaliada quanto à desinfeção ou esterilização de materiais, instrumentos e próteses, polimerização de resina acrílica^{9,10} e plastificação de godiva^{10,11}.

As micro-ondas ou ondas eletromagnéticas são produzidas pelo magnetron, válvula geradora capaz de produzir feixes de micro-ondas que são transferidos para a cavidade do forno 12,13. Essas ondas podem ser absorvidas, transmitidas ou refletidas pelo material sobre o qual incidem. Quando absorvidas, interagem com as moléculas do material, gerando calor no seu interior, promovendo o seu aquecimento 2,14,15 e podendo gerar o efeito esterilizante 1,3,4,9,16-21. Quando comparado ao forno convencional, este aquecimento mostra-se mais rápido, eficiente e uniforme 2,14, por ocorrer entre a superfície e o interior do material através de conversão de energia e não por condução de calor 13.

Entretanto, algumas características intrínsecas do funcionamento dos fornos de micro-ondas como geração de calor, distribuição da energia eletromagnética¹⁴, irradiação de objetos metálicos²², tempo de vida útil do magnetron e

existência de efeitos não térmicos das micro-ondas^{19,23} ainda não estão esclarecidas. Alguns fatores podem ainda interferir no resultado final dos procedimentos realizados com este equipamento, como o volume da cavidade do aparelho e o nível de potência máxima real que influenciam na eficiência do forno⁹ e no tempo necessário de exposição à irradiação¹⁴, além da existência dos pontos quentes e frios^{14,22}.

Uma distribuição não uniforme do campo eletromagnético pode gerar uma variação acentuada da temperatura em diferentes regiões horizontais e verticais no interior dos fornos, interferindo no aquecimento e, consequentemente, na efetividade do processo de esterilização 11,13,21. Diferentes métodos diretos e indiretos têm visado avaliar essa distribuição de energia, principalmente pela análise da temperatura, utilizando filme de gel de sílica, filme de cristal líquido, tinta termográfica, partículas tonalizantes, lâmpadas de néon e leituras por computador 3,12-14. Alguns autores têm buscado auxiliar nessa distribuição de energia, principalmente por meio da utilização de mecanismos de rotação tridimensional 12; entretanto, outros autores afirmam que tais mecanismos são indisponíveis e dispendiosos, o que inviabiliza sua utilização 24.

Ainda não existe consenso em relação a qual posição do objeto no interior dos fornos seria mais propícia à absorção de energia e obtenção de maiores níveis de temperatura^{2,6,21}, sendo, portanto, necessários estudos a fim de definir protocolos para utilização segura e eficiente destes equipamentos.

Este estudo avaliou as variações de temperatura em fornos de micro-ondas, a fim de investigar as áreas de maior e menor intensidade do campo eletromagnético e a efetividade do processo de desinfeção.

Download English Version:

https://daneshyari.com/en/article/3173619

Download Persian Version:

https://daneshyari.com/article/3173619

Daneshyari.com