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a b s t r a c t

We introduce a novel, flexible, optimization-based mathematical framework for the modeling of

arbitrarily complex metabolic networks: topological metabolic analysis (TMA). The framework is

adapted from state-space approaches used by Manousiouthakis and co-workers for the representation

of complex heat- and mass-exchanger networks. We offer a thorough discussion of the mathematics

and general theory underlying the framework, and discuss certain mathematical advantages of our

modeling representation in comparison with other commonly used techniques (MFA and FBA). We

employ a novel aggregate objective function for use with our basic constraint model, including a

generalized least-squares term (for fitting available experimental measurements) and a linear

design term (for representing biological or engineering goals). Using a case-study taken from recent

literature (McKinlay et al., 2007), we demonstrate (among other benefits) the ability of this objective to

identify alternate distinct-yet-equally optimal solutions for a given modeling problem. We also show that

these solutions, obtained using only external metabolite uptake and secretion measurements, provide

useful biological insights and compare favorably with solutions obtained on the basis of 13C isotope-

tracing data.

& 2010 Elsevier Inc. All rights reserved.

1. Introduction

The need for quantitative and robust metabolic modeling
approaches continues to be driven by an ever-expanding family
of high-value industrial applications for both prokaryotic and
eukaryotic organisms. Among these applications are the use of
microbial, plant-cell, and mammalian-cell cultures in the pharma-
ceutical industry for the biological manufacture of proteins and
other active therapeutic compounds (Dinnis and James, 2005;
Chiba and Jigami, 2007; Hamilton and Gerngross, 2007; Jain and
Kumar, 2008; Pscheidt and Glieder, 2008; Boghigian et al., 2010),
and the use of microbial-cell cultures to generate biogas (Igoni
et al., 2008; Cantrell et al., 2008), hydrogen gas (Liu and Fang, 2003;
Datar et al., 2007; Porwal et al., 2008), bioethanol (Hatzimanikatis
et al., 1998; Otero et al., 2007), and bioplastic materials (Verlinden
et al., 2007; Munoz and Riley, 2008). In each case, the network of
metabolic reactions within the chosen organism is responsible for
executing the desired chemical synthesis.

To improve these processes, it is therefore desirable to engineer
these biological networks just as one would for non-biological
chemical process networks. As a result of evolutionary pressures,
metabolic networks are intricate and robust systems capable of
mitigating the overactivity or underactivity of many different
reactions. Consequently, modifications to these networks many
times do not elicit the desired engineering outcome (Bailey et al.,
2002). Detailed and quantitative methods for modeling metabolic
networks of arbitrary size and complexity are useful tools to help
elucidate complex network responses, thereby helping to guide
more effective engineering.

Many approaches currently in use for the modeling of metabolic
networks are based upon the stoichiometric balancing method
advanced in the early 1990s by Palsson and co-workers (Savinell
and Palsson, 1992b,a; Varma and Palsson 1994b, a). Such models
are generally expressed in the following form:

sR ¼ k: ð1Þ

The N �Mmatrix s stores stoichiometric coefficients describ-
ing a system of M metabolic reactions involving N metabolites.
The M� 1 vector R describes the overall reaction rates (fluxes)
through each of theM reactions. The N � 1 vector k describes the
net rate at which each of the N metabolites enter or leave the
network.
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Implicit in this formulation is a so-called ‘‘pseudo-steady-state’’
assumption, which posits that the rate at which intracellular
concentrations of metabolites increase or decrease is quite slow
relative to the rate at which metabolites are consumed or generated
in metabolic reactions. While this assumption has generally not
been rigorously tested, there is some support for its validity.

In the absence of stresses or perturbations to the cell, it has been
shown that intracellular concentrations for many metabolites
change at a rate comparable to that of overall cell growth
(i.e. biomass accumulation) (Hans et al., 2003; Hoque et al.,
2005; Chrysanthopoulos et al., 2010). Even for rapidly growing

organisms, the cell growth rate is an order of magnitude slower
than the rate of many metabolic reactions. Moreover, it has been
recently shown that the majority of intracellular metabolites in
Escherichia coli are present in concentrations well above the known
or assumed Michaelis constants (Km) of more than 300 metabolic
enzymes (Bennett et al., 2009), suggesting that many metabolic
reactions typically operate at their maximum (or saturated) rates.

Because metabolites routinely participate in multiple reactions
within the same network, s will usually have many more columns
than rows, and the system of equations described by Eq. (1) will
usually be underdetermined. Networks incorporating branched,

Nomenclature

Mathematical symbols

M the total number of reactions in the metabolic network
N the total number of distinguishable metabolites in the

metabolic network
s the N �M matrix of stoichiometric coefficients si,j

si,j the stoichiometric coefficient for metabolite i in reac-
tion j

R theM� 1 vector of overall reaction rates Rj

Rj the overall rate of reaction j

R theM�N matrix of metabolite-specific reaction rates
Ri,j

Ri,j the rate at which metabolite i is consumed or gener-
ated in reaction j. Also equal to si,jRj

k the N � 1 vector of net metabolite uptake or
secretion rates

U
i

the vector of flow rates for the input/uptake streams of
family/metabolite i

U i the net uptake rate of metabolite i

a
i

the vector of intensive qualities for the input/uptake
streams of family/metabolite i

Y
i

the vector of flow rates for the output/secretion
streams of family/metabolite i

Yi the net secretion rate of metabolite i

b
i

the vector of intensive qualities for the output/secre-
tion streams of family/metabolite i

fDg the set of parameter vectors D
j

s the matrix of flow rates for the substrate streams
si,j the total flow rate of metabolite i into reaction j

g the matrix of intensive qualities for the substrate
streams

p the matrix of flow rates for the product streams
pi,j the total flow rate of metabolite i exiting reaction j

d the matrix of intensive qualities for the product
streams

F the set of all network metabolites
FU the set of all network metabolites permitted to enter

the network (i.e. are consumed by the network)
FY the set of all network metabolites permitted to leave

the network (i.e. are secreted by the network)
G the set of all network reactions
wi the vector of all flow rates wi,j

wi,j the flow of metabolite i directly to reaction j from an
external source

xi the vector of all flow rates xi,j

xi,j the flow of metabolite i directly to an external sink
from reaction j

t
i

the matrix of all flows ti,j,k

ti,j,k the flow of metabolite i directly from reaction j to
reaction k

bi the flow of metabolite i directly from an external
source to an external sink

m the total number of constraints in the network model
n the total number of variables in the network model
q the n� 1 vector of all TMA model variables
Z the number of individual fitting goals within the

generalized least-squares objective term
m the Z � Z matrix whose zth diagonal element is mz

mz the arbitrary weight applied to the zth fitting goal
g the Z � n matrix of vectors g

z
gz the zth 1� n vector such that gT

z
q ¼ dz

d theZ � 1 vector of experimental measurement values dz

dz the zth experimental measurement value

Metabolite abbreviations

Ace acetate
AcCoA acetyl-coenzyme-A
ATP adenosine-triphosphate
Ala alanine
Asp aspartate
CO2 carbon-dioxide
Cys cysteine
E4P erythrose-4-phosphate
EtOH ethanol
F6P fructose-6-phosphate
For formate
Fum fumarate
Glc glucose
G3P glyceraldehyde-3-phosphate
Glxt glyoxylate
Gly glycine
His histidine
Ile isoleucine
Leu leucine
Lys lysine
Mal malate
Met methionine
NADH reduced-nicotinamide-adenine-dinucleotide
NADPH reduced-nicotanamide-adenine-dinucleotide-

phosphate
OXA oxaloacetate
Phe phenylalanine
Pyr pyruvate
PEP phospho-enol-pyruvate
R5P ribose-5-phosphate
S7P sedoheptulose-7-phosphate
Ser serine
Suc succinate
Thr threonine
Val valine
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