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a b s t r a c t

Having previously introduced the mathematical framework of topological metabolic analysis (TMA) – a novel

optimization-based technique for modeling metabolic networks of arbitrary size and complexity – we

demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma

metabolic investigations as case-studies (Bonarius et al., 1995, 1996, 2001), we first establish that the TMA

framework identifies biologically important aspects of the metabolic network under investigation. We also

show that the use of a structured weighting approach within our objective provides a substantial modeling

benefit over an unstructured, uniform, weighting approach. We then illustrate the strength of TAM as an

advanced interrogation technique, first by using TMA to prove the existence of (and to quantitatively describe)

multiple topologically distinct configurations of a metabolic network that each optimally model a given set of

experimental observations. We further show that such alternate topologies are indistinguishable using existing

stoichiometric modeling techniques, and we explain the biological significance of the topological variables

appearing within our model. By leveraging the manner in which TMA implements metabolite inputs and

outputs, we also show that metabolites whose possible metabolic fates are inadequately described by a given

network reconstruction can be quickly identified. Lastly, we show how the use of the TMA aggregate objective

function (AOF) permits the identification of modeling solutions that can simultaneously consider experimental

observations, underlying biological motivations, or even purely engineering- or design-based goals.

& 2010 Elsevier Inc. All rights reserved.

1. Introduction

Since the first recombinant protein therapy manufactured in
mammalian cell culture was licensed for human use in 1986 (t-PA)
(Vehar et al., 1986), the use of eukaryotic cell cultures for the
biological manufacture of high-value therapeutic compounds has
become commonplace in biotechnology. Mammalian cell cultures,
particularly Chinese hamster ovary (CHO) and NS0 or Sp2/0 murine-
myelomas, are the most industrially prevalent platforms for ther-
apeutic protein production (Chu, 2001), primarily due to their ability
to generate the glycosylation patterns needed for human efficacy.
While there has been some recent success in obtaining similar
glycosylation patterns in plant (Bakker et al., 2001; Ko et al., 2008;

Jamal et al., 2009) and yeast (Hamilton and Gerngross, 2007; Potgieter
et al., 2009) cells, these technologies are still largely developmental.

The development of cell-culture-based manufacturing processes
has been characterized over the years principally by ‘‘trial-and-error’’
experimentation aimed towards identifying growth-medium
formulations or growth conditions capable of sustaining high viable
cell concentrations for as long as possible (Liu et al., 2001; Altamirano
et al., 2006). Metabolic models and other quantitative strategies have
only more recently been employed for the rational selection of these
same parameters (Altamirano et al., 2004; Liu and Chang, 2006;
Xie and Wang, 2006). Even still, medium- and condition-based
process improvements are notoriously cell-line-specific, and often
do not generate similar improvements for different cell-lines secret-
ing different proteins. Moreover, methods for improving viable cell
density address only one half of the overall productivity problem; it is
equally important to improve the per-cell product yield.

As methods in genetic engineering have improved, process
improvements through direct gene manipulation have become
possible. Techniques that improve protein yield by amplifying the
copy number of target genes (e.g. dihydro-folate-reductase, DHFR)
have already become commonplace. Genetic techniques directed
towards promoting the transcription rate of target genes have also
been reported (Koduri et al., 2001; Running Deer and Allison, 2004).
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There have also been efforts towards improved process yield by
manipulation of genes and enzymes involved in metabolic processes
other than transcription and translation of the target genes (Paredes
et al., 1999; Wong et al., 2006; Wlaschin and Hu, 2007).

As a result of such efforts, it is well known that the complexity
and robustness of metabolic networks (particularly eukaryotic
networks) makes it difficult to ensure that any particular manip-
ulation of the network actually elicits its intended effect (Bailey
et al., 2002; Park et al., 2008). Quantitative modeling techniques for
metabolic networks of arbitrary size and complexity are therefore
appealing as tools to better guide such engineering strategies.

The majority of modeling approaches currently in use, including
metabolic flux analysis (MFA) and flux balancing analysis (FBA),
derive from a fundamental stoichiometric balancing technique
originally described by Palsson and co-workers (Savinell and
Palsson, 1992b,a; Varma and Palsson, 1994b,a).

While these approaches have proven useful, they nonetheless
suffer from a number of mathematical limitations. Among these is a
sensitivity to the completeness of the reconstructed metabolic
network used to model the system of interest. Because the
modeling constraints in a stoichiometric balancing method rely
directly upon the matrix of stoichiometric coefficients describing
the reactions present, the ability of the model to adequately capture
certain metabolic behaviors is contingent upon inclusion of the
proper reactions (Kauffman et al., 2003; Puchalka et al., 2008;
Raman and Chandra, 2009). This holds particularly true when
stoichiometric models are integrated with data from isotopic
tracing experiments (e.g. 13C NMR or MS), since omitting certain
reactions in that case can substantially alter interpretation of the
data (van Winden et al., 2001; Zamboni et al., 2009).

Another limitation of classical stoichiometric modeling approaches
is an inherent inability to quantitatively describe the topology of
metabolic networks. By quantifying only network stoichiometry ðs Þ,
reaction rates ðRÞ, and overall metabolite uptake and/or secretion
rates ðkÞ, these models can reveal the relative activities of each reaction

in the network, but not the manner in which the reactions are
interconnected by the sharing of metabolites.

In this work, we demonstrate how topological metabolic analysis
(TMA), a novel optimization-based modeling framework previously
introduced (Baughman et al., this issue), can be used to interrogate
metabolic networks in ways not previously demonstrated using
classical stoichiometric modeling methods. Employing illustrative
case-studies of hybridoma metabolism (Bonarius et al., 1995, 1996,
2001), we examine the topology of a sample metabolic network, and
show that multiple topologically distinct network configurations
(each of which is equivalently optimal in reproducing experimental
observations) can be identified using TMA. We further show that
these alternate network configurations are not mathematically
distinguishable using existing stoichiometric modeling approaches.

We then discuss the completeness of metabolic network recon-
structions, and how incomplete reconstructions can negatively impact
model quality. Specifically, by exploiting the unique manner in which
metabolite inputs and outputs are represented within TMA, we easily
identify metabolites whose metabolism is not adequately described by
the given reconstruction, and which thereby prohibit the reconstruc-
tion from adequately modeling experimental observations.

Lastly, we demonstrate how the use of an aggregate objective
function (AOF) can combine experimental observations with either
known biological motives or purely engineering-based goals to
generate modeling solutions of use if experimental data is scarce, or
when probing a particular metabolic network for fundamental
engineering limitations.

2. Theory and methods

2.1. Topology of metabolic networks

We note that the mathematics underlying topological metabolic
analysis (TMA) as a modeling framework have been previously

Nomenclature

Metabolite abbreviations

ACoA acetyl-coenzyme-A
ATP adenosine-triphosphate
ARG arginine
ALA alanine
MAB monoclonal-antibody
ASN asparagine
ASP aspartate
TC carbohydrate
CHOL cholesterol
CIT citrate
CO2 carbon-dioxide
CYS cysteine
DNA deoxy-ribonucleic-acid
E4P erythrose-4-phosphate
FADH2 reduced-flavin-adenine-dinucleotide
FA fatty-acid
F6P fructose-6-phosphate
GLC glucose
GAP glyceraldehyde-3-phosphate
GLN glutamine
GLU glutamate
GLY glycine
HIS histidine
HYP hydroxy-proline

ILE isoleucine
LAC lactate
LEU leucine
PL phospholipid
LYS lysine
MET methionine
NADH reduced-nicotinamide-adenine-dinucleotide
NADPH reduced-nicotinamide-adenine-dinucleotide-

phosphate
NH3 ammonia
O2 oxygen
OMA oxaloacetate/malate
PHE phenylalanine
PRO proline
PROT cellular-protein
PYR pyruvate
PEP phospho-enol-pyruvate
R5P ribose-5-phosphate
RNA ribonucleic-acid
Ru5P ribulose-5-phosphate
S7P sedoheptulose-7-phosphate
SER serine
THR threonine
TRP tryptophan
TYR tyrosine
VAL valine
X5P xylulose-5-phosphate
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