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Metabolic flux analysis (MFA) is a key tool for measuring in vivo metabolic fluxes in systems at
metabolic steady state. Here, we present a new method for dynamic metabolic flux analysis (DMFA) of
systems that are not at metabolic steady state. The advantages of our DMFA method are: (1) time-series
of metabolite concentration data can be applied directly for estimating dynamic fluxes, making data
smoothing and estimation of average extracellular rates unnecessary; (2) flux estimation is achieved
without integration of ODEs, or iterations; (3) characteristic metabolic phases in the fermentation data
are identified automatically by the algorithm, rather than selected manually/arbitrarily. We demon-
strate the application of the new DMFA framework in three example systems. First, we evaluated the
performance of DMFA in a simple three-reaction model in terms of accuracy, precision and flux
observability. Next, we analyzed a commercial glucose-limited fed-batch process for 1,3-propanediol
production. The DMFA method accurately captured the dynamic behavior of the fed-batch fermentation
and identified characteristic metabolic phases. Lastly, we demonstrate that DMFA can be used without
any assumed metabolic network model for data reconciliation and detection of gross measurement
errors using carbon and electron balances as constraints.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Metabolic flux analysis (MFA) has emerged as a tool of great
significance in metabolic engineering, biotechnology and systems
biology. Determining in vivo metabolic fluxes provides useful
information about the cellular metabolic phenotype: it offers insight
into the regulation of product biosynthesis pathways (Antoniewicz
et al., 2007c; Moxley et al., 2009; Reed et al., 2010), allows identi-
fication of genetic targets for metabolic engineering (Park et al.,
2007), and can be used for metabolic network validation (Crown
et al,, 2011). MFA has become a standard tool for measuring steady
state metabolic fluxes in many academic labs. However, MFA is still
not commonly used in the industry. One reason is that MFA relies on
the assumption that the biological system is at metabolic steady
state, specifically that intracellular metabolic fluxes are constant
in time. This assumption is approximated during early exponential
growth in batch cultures and in steady state continuous cultures.
However, industrial bioprocesses are predominantly fed-batch fer-
mentations and these cultures are inherently dynamic in nature, as
the cells continually adapt to a changing environment characterized
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by decreasing nutrient levels, increasing cell density and accumula-
tion of products and by-products (Ahn and Antoniewicz, 2011;
Hjersted et al., 2007; Meadows et al., 2010). In these systems, classical
MFA techniques cannot be directly applied to determine fluxes.

In recent years, initial attempts have been undertaken to address
this problem through the development of dynamic metabolic flux
analysis (DMFA) techniques (Lequeux et al., 2010; Llaneras and Pico,
2007; Niklas et al., 2011). The goal of DMFA is to determine changes
in fluxes during a culture from analysis of time-series of extra-
cellular measurements. Current DMFA methods assume that flux
transients are relatively slow, on the order of hours, compared to the
time required to reach pseudo steady state for intracellular meta-
bolites, which is typically on the order of seconds to minutes. With
this assumption, determining flux transients from time-series of
extracellular measurements involves the following three steps:
(i) divide the experiment into discrete time intervals; (ii) calculate
average external rates for each time interval by taking derivatives
of external concentration measurements; and (iii) calculate fluxes
for each time interval using classical MFA (Niklas et al., 2011). The
results of these steady state models, evaluated at different time
points, are then combined to obtain a time profile of flux transients.
While these methods provide useful information, they have a
number of drawbacks and limitations. First, current methods do
not allow the complete time-series of data to be analyzed as a
whole, but rather as unconnected sub-problems. Thus, important
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dynamic information is ignored. Furthermore, there are missed
opportunities for data reconciliation, detection of gross measure-
ment errors, and enforcement of additional constraints, such as
an overall carbon and electron balance for the culture. Finally,
substantial errors are introduced in the analysis when concentra-
tion measurements are transformed into average external rates.
Taking derivatives of concentration measurements results in loss
of information, e.g. two or more concentration measurements
provide one average flux, and more significantly, measurement
errors are amplified. It has been suggested that data smoothing
techniques can reduce the latter problem (Lequeux et al., 2010;
Niklas et al., 2011); however, this comes at a cost, namely further
loss of information and the potential to introduce biases.

Here, we present a new mathematical approach for DMFA that
directly fits the complete time-series of concentration measure-
ments all at once to determine metabolic transients for the entire
culture. Our method does not depend on manually selecting time
intervals to describe flux transients. Instead, rigorous statistical
criteria are used to automatically detect the level of dynamic
information present in the data. Our DMFA algorithm returns
the simplest flux solution that yields a statistically acceptable fit
of the data. This is a new and unique feature of our approach.
Finally, our method is generic, and thus can be applied to any
biological system, e.g. microbial, mammalian, plant, etc. In this
contribution, we demonstrate the application of DMFA in three
example systems. First, we demonstrate the basic concepts of
DMFA using a simple three reaction model. Next, we investigate a
realistic model of Escherichia coli metabolism using data from a
fed-batch fermentation taken from literature where 1,3-propane-
diol was produced from glucose (Antoniewicz et al., 2007c).
Lastly, we evaluate the application of DMFA without an assumed
metabolic network model for detecting gross measurement errors
in fermentation data and for data reconciliation using only carbon
and electron balances as constraints.

2. Methods
2.1. Metabolic flux analysis at metabolic steady state

The key to quantifying intracellular metabolic fluxes is to analyze
the biological system as an integrated biochemical network, rather
than a set of individual reactions. The classical MFA method relies on
balancing fluxes around metabolites within an assumed network
stoichiometry. At metabolic steady state, intracellular fluxes (v) are
constrained by the stoichiometry matrix (S):

Sv=0 1)

To determine intracellular fluxes from measured external rates
(rm), the following least-squares problem is solved:

min SSR = Z (ri—Tim)/ 0 2)

s.t. ri=R;'v
0=Sv

The MFA objective is to find a set of intracellular fluxes that
minimizes the variance-weighted sum of squared residuals (SSR)
between the measured and predicted external rates. Here, the
measurement matrix R contains unity values for fluxes corre-
sponding to external rates, and ¢ denotes standard deviations of
external rate measurements. Because the model equations are
linear with respect to the metabolic fluxes, a simple solution to
the MFA problem can be derived, shown here in matrix form
(Appendix A)

v=K-K"-RT-W-R-Ky"V-KT-RT-W-rp, 3)

With
K=null(S) and v=K-u 4)

here W is a weighting matrix with the inverses of measurement
variances (1/c?) on the diagonal, K is the kernel (i.e. null space) of
the stoichiometry matrix, and u is the vector of the so-called free
fluxes (Antoniewicz et al., 2006).

2.2. Equations for describing dynamics of concentrations and fluxes
at metabolic non-steady state

The goal of this work is to extend MFA to metabolic non-steady
state cases, that is, to allow the estimation of fluxes in experiments
where metabolite pools and fluxes changed with time. Our method
is based on non-steady state mass balances for metabolite pools
(i.e. a more general form of Eq. (1)):

dc/dt =S-v(t)=S-K-u(t) with K=null(Spy) 5)

We classify metabolites in the model as either being balanced
or non-balanced. Typically, we will assume that intracellular meta-
bolites are balanced and external metabolites are non-balanced.
To model flux dynamics in cultures we need an expression for
describing flux changes as a function of time. The simplest assump-
tion is that fluxes change linearly between two time points to and t;:

e _t—to [t
v(t)=K-ug (1 t1—t0> +K-uy <t1—t0> (6)

By combining Eqgs. (5) and (6) we can rewrite the mass balances
explicitly as a function of free fluxes ug and u4, time points to and ty,
and time ¢t

de/dt=S-K-uo- (1_ t7t0>+5.,<.u].<tf*fo> @

t1—to 1—to

Explicit integration of Eq. (7) yields the following expression
for metabolite pool sizes as a function of time:

1 (t—tp)? 1(t—to)?
c(t)y=co+S-K-up- <f—fo—2(t] :;i > +S-K-uq- <2(t1 7% ) (€))

Eq. (8) is the exact algebraic solution to the original ODE
problem stated in Eq. (5). A useful characteristic of Eq. (8) is that it
is linear with respect to model parameters that will be estimated,
namely ug, uq, and co. We have further generalized Eq. (8) by
allowing the multiple so-called DMFA time points to be defined
for an experiment (ti, to, ..., t,), and derived expressions that
describe the dynamics of fluxes and metabolite pools as a
function of time, shown here in matrix form

v(t)=K-U-K(t,t;) 9

ct)y=co+S-K-U-yp(t,t;) (10)

Here, cg is a vector of initial pool sizes, U is a matrix that contains
column vectors of free fluxes at the DMFA time points, U=[u;,
Uy, ..., Uy], and the matrices y and k contain all of the time-
dependent terms. These matrices are calculated using the expres-
sions given in Table 1. Egs. (9) and (10) form the basis for our
DMFA method that is described next.

2.3. Metabolic flux analysis at metabolic non-steady state

In order to describe flux transients mathematically, the time
domain of a culture is divided into multiple smaller time intervals
where fluxes can be assumed to change at a constant rate bet-
ween the various DMFA time points. For illustration purposes,
the time domain in Fig. 1 was divided into three intervals where
the flux changed linearly between the initial time point (t;), two
inflection time points (¢, and t3), and the end time point (t4). Two
important things to note are that we do not require the inflection
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