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The majority of dynamic gene regulatory network (GRN) models are comprised of only a few genes and

do not take multiple transcription regulation into account. The models are conceived in this way in

order to minimize the number of kinetic parameters. In this paper, we propose a new approach for

predicting kinetic parameters from DNA-binding site sequences by correlating the protein–DNA-

binding affinities with nucleotide sequence conservation. We present the dynamic modeling of the cra

modulon transcription in Escherichia coli during glucose-limited fed-batch cultivation. The concentra-

tion of the Cra regulator protein inhibitor, fructose 1,6-bis(phosphate), decreases sharply, eventually

leading to the repression of transcription. Total RNA concentration data indicate a strong regulation of

transcription through the availability of RNA polymerase. A critical assessment of the results of the

model simulations supports this finding. This new approach for the prediction of transcription

dynamics may improve the metabolic engineering of gene regulation processes.

& 2009 Published by Elsevier Inc.

1. Introduction

The workflow of the dynamic modeling of genetic regulatory
networks (GRNs) taking into account network interactions
between DNA, RNA, proteins and small molecules reveals similar
problems to those observed in the dynamic modeling of metabolic
networks. In both cases, the initial step involves the overall
network model architecture, since the qualitative aspects of
network performance depend on network topology. Hecker et al.
(2009) have reviewed the most important models for inferring the
appropriate network architecture, including information theory
models, Boolean and Bayesian networks (such as the approach for
reconstructing large-scale Boolean networks proposed by Mehra
et al., 2004), as well as differential and difference equations, to

name just a few. As far as E. coli is concerned, the topology of many
regulatory networks was previously studied on the basis of
fundamental molecular biology studies which led to hierarchical
concepts (Lengeler et al., 1999). The significance of the modular
structure of the key regulation processes of the central carbon
metabolism enzymes under glucose limitation has been confirmed
by the results obtained from complementary microarray and
metabolic flux analyzes during fed-batch cultivations with con-
stant feeding rates (Hardiman et al., 2007; Lemuth et al., 2008).

The next step towards improving the understanding of
network performance is dynamic models that include quantita-
tive details of molecular interactions, e.g., reaction kinetics. As is
the case for the dynamic modeling of metabolic networks, the
difference can also be seen here between top-down computa-
tional models based on the canonical representations of kinetic
properties and bottom-up approaches, which integrate mechan-
istic biological information about the individual molecular
interactions. In other words, systems behavior is modeled by
combining the individual reactions. For some metabolic networks,
the two complementary approaches have been illustrated by
Reuss et al. (2007).
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Due to the extensive use of differential and difference
equations for inferring the network architecture, the two
complementary approaches are more difficult to tell apart in the
case of GRNs. The models used in these dynamic representations
are either linear (Chen et al., 1999) or implement non-linearity
through polynomial functions (Sakamoto and Iba, 2001),
S-systems models (Vilela et al., 2008; Voit, 2008), generic
sigmoidal functions (Haixin et al., 2007; Weaver et al., 1999)
and neural network frameworks (Vohradsky, 2001a, 2001b).
There is an inherent conflict between model quality and complex-
ity, which affects the reliability of parameter estimation in
higher-connected networks. Thus, robust identification of model
structure and parameters will frequently encounter problems in
terms of discriminating between different models (cf. also Hadlich
et al., 2009). Furthermore, the estimated parameters cannot be
interpreted in a physically and biologically meaningful way using
such approaches.

In contrast, bottom-up models based on well understood
molecular interactions enable the integration of mechanistically
meaningful parameters. The use of such deterministic models for
describing the regulation of gene expression has a long tradition.
The majority of these models focus on the lac operon and the
phenomena of diauxic growth of E. coli (Harder and Roels,
1982; Kremling et al., 2001; Kremling and Gilles, 2001; Lee and
Bailey, 1984a, 1984b; Roels, 1978; Schmid et al., 2004; Sevilla
et al., 2007; Wong et al., 1997) (Table S1 of the supplementary
material). The mathematics of all these models is similar and rests
largely upon the concept suggested by Yagil and Yagil (1971).
Applying the operon model of Jacob and Monod (1961), Yagil and
Yagil estimated the probability of transcription initiation of a gene
that is regulated by a repressor or activator protein by assuming
equilibrium reactions of the regulator protein (R) and the effector
molecule (E) or the DNA binding site (DNAbs):

RþE"
k1

RE; ð1Þ

RþDNAbs"
K2

R:DNAbs; ð2Þ

j¼ cR:DNAbs

cDNAbs;t
¼

K2 cRðK1; cE; cR;tÞ

1þK2 cRðK1; cE; cR;tÞ
: ð3Þ

f is the fraction of DNAs that are bound by R and that can be
used for calculating the probability of transcription (Yagil, 1975;
Yagil and Yagil, 1971). c is the concentration of the particular
model component, where cR describes the free regulator protein,

and cR,t the total regulator protein. The major progress that
resulted from Yagil and Yagil’s approach (1971) is that no more
than two equilibrium constants (K1,K2) were needed for the
mechanistic modeling of gene regulation. K2 is the binding
constant of the protein–DNA reaction. However, microbial
transcription units usually include many DNA-binding sites and
multiple promoters. For example, the lac operon has 11 DNA-
binding sites, 5 of which are targeted by the Crp activator protein
or the LacI repressor protein, and 5 promoters. When applying the
concept of Yagil and Yagil (1971) to complex GRNs, the high
number of individual DNA-binding constants (K2) will again
restrict detailed mechanistic modeling. It is therefore not
surprising that in previous studies, many of the regulatory
interactions were not taken into account (Table S1, supplemen-
tary material). Under defined environmental conditions, the
pooling (lumping together) of multiple promoters and regulatory
sites seems reasonable in order to reduce the number of
individual DNA-binding constants (K2) (Table S1). In contrast,
for dynamic GRNs that aim at disentangling all potential
regulatory interactions at the same time as achieving a quanti-
tative understanding, the high number of individual DNA-binding
constants (K2) may become a critical limitation. Therefore, an
approach is needed to reduce the number of parameters using a

priori information (Hecker et al., 2009). One possibility is to
estimate the relevant DNA-binding constants directly from data of
surface plasmon resonance experiments (Majka and Speck, 2007),
for example.

The prediction of parameters from conserved DNA-binding site
sequences involves an entirely different and straightforward
approach. The approach of Mulligan et al. (1984), Schneider
et al. (1986), Berg and von Hippel (1987) (reviewed by Stormo,
1990) was to use the frequency of each nucleotide at each
position of the DNA-binding sites for calculating binding con-
stants. The frequency data are embedded in a position weight
matrix, PWM (also referred to as position-specific scoring matrix,
PSSM) (Wasserman and Sandelin, 2004). However, this approach
has never been applied to the dynamic modeling of GRNs.

For fed-batch experiments at constant feeding rates, which is
the focus of the present paper, an additional factor is of particular
importance – growth rate-dependent regulation. In previous
models, growth rate-dependent regulation was usually addressed
by simple linear approximation functions, under the assumption
that (i) the transcription rate is directly proportional to the
specific growth rate (m) and (ii) that in kinetic terms this
regulation is the same for all genes (Gondo et al., 1978; Harder

Nomenclature

cj intracellular concentration of compound j

[mol(lcytosol)
�1]

cj,t total intracellular concentration of compound j

[mol(lcytosol)
�1]

Xj specific intracellular concentration of compound j

[mol(g dry weight)�1]
rj intracellular mass concentration of compound j

[g(lcytosol)�1]
Nj number of compound j [dimensionless]
ri rate of intracellular reaction i [mol (lcytosol s)�1]
Vcell cell volume [lcytosol]
nX specific cell volume [lcytosol (g dry weight)�1]
kj individual rate constant for compound j [s�1]
m specific growth rate [h�1]
o fractional change of the specific cell volume [h�1]

fk probability of binding to DNA-binding site k

[dimensionless]
Fk probability of transcription with respect to binding of

a protein to the DNA-binding site k [dimensionless]
ak spacer penalty k [dimensionless]
dk enhancement factor k [dimensionless]
Zj efficiency of transcription from promoter j [dimen-

sionless]
aj,bj parameters for linear approximation functions
NA Avogadro constant
Kk equilibrium constant of reaction k, [M�1] or [M�4]
Ci

j control coefficient for species i in response to changes
in j [dimensionless]

scorek specificity score for the nucleotide sequence k

[dimensionless]
SpM specificity matrix with the entries am,n [dimension-

less]
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