Clinical reviews in allergy and immunology

Series editors: Donald Y. M. Leung, MD, PhD, and Dennis K. Ledford, MD

T_H17 cells and regulatory T cells in primary immunodeficiency diseases

Hans D. Ochs, MD,^a Mohamed Oukka, PhD,^b and Troy R. Torgerson, MD, PhD^a Seattle, Wash, and Boston, Mass

INFORMATION FOR CATEGORY 1 CME CREDIT

Credit can now be obtained, free for a limited time, by reading the review articles in this issue. Please note the following instructions.

Method of Physician Participation in Learning Process: The core material for these activities can be read in this issue of the Journal or online at the JACI Web site: www.jacionline.org. The accompanying tests may only be submitted online at www.jacionline.org. Fax or other copies will not be accepted.

Date of Original Release: May 2009. Credit may be obtained for these courses until April 30, 2011.

Copyright Statement: Copyright © 2009-2011. All rights reserved.

Overall Purpose/Goal: To provide excellent reviews on key aspects of allergic disease to those who research, treat, or manage allergic disease.

Target Audience: Physicians and researchers within the field of allergic disease.

Accreditation/Provider Statements and Credit Designation: The American Academy of Allergy, Asthma & Immunology (AAAAI) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The AAAAI designates these educational activities for a maximum of 1 *AMA*

After activation by unique cytokines, CD4^+ naive T cells differentiate into lineages of helper/effector (T_H) and regulatory T (Treg) cells that are characterized by distinct developmental pathways and unique biologic functions. The trusted binary system of T_H1 and T_H2 has been expanded to include the IL-17– producing T_H17 cell lineage, which plays a role in immune responses to infectious agents and maintenance of autoimmune diseases. Acting as counterbalance, Treg cells maintain peripheral tolerance and protect the host from autoaggressive lymphocytes. T_H1 cells produce IFN- γ and are involved in cellmediated immunity, T_H2 cells generate IL-17 and play an important role in immune responses to fungi and extracellular pathogens, and forkhead box protein 3–positive (FOXP3⁺) Treg cells secrete TGF- β and IL-10 and downregulate effector

0091-6749/\$36.00

doi:10.1016/j.jaci.2009.03.030

*PRA Category 1 Credit*TM. Physicians should only claim credit commensurate with the extent of their participation in the activity.

List of Design Committee Members: *Authors:* Hans D. Ochs, MD, Mohamed Oukka, PhD, and Troy R. Torgerson, MD, PhD

Activity Objectives

1. To understand the biology, development, and function of $T_{\rm H}17$ and regulatory T cells.

2. To understand the differences in $T_H 17$ and regulatory T-cell development between murine and human naive CD4⁺ T cells.

3. To identify the role of $T_H 17$ and regulatory T cells in primary immunodeficiency diseases.

Recognition of Commercial Support: This CME activity has not received external commercial support.

Disclosure of Significant Relationships with Relevant Commercial Companies/Organizations: H. D. Ochs has served on intravenous immunoglobulin advisory boards for Baxter and CSL-Behring and has received research support from the Jeffrey Modell Foundation and CSL-Behring. T. R. Torgerson has served on an advisory board for Baxter Healthcare and has received research support from CSL-Behring.

T cells. Autosomal dominant hyper-IgE syndrome, a rare primary immunodeficiency disorder, is caused by hypomorphic heterozygous mutations of signal transducer and activator of transcription 3 (STAT3), preventing $T_H 17$ lineage differentiation and increasing susceptibility to *Staphylococcus* and *Candida* species infections. Mutations in the *FOXP3* gene interfere with Treg cell development and cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Other single-gene defects resulting in reduced Treg cell function include CD25, signal transducer and activator of transcription 5b, autoimmune regulator, and Wiskott-Aldrich syndrome protein. These observations emphasize the importance of functionally distinct T-cell lineages in maintaining a balanced innate and cognate immune system. (J Allergy Clin Immunol 2009;123:977-83.)

Key words: Regulation of T effector cell lineage differentiation, $T_H 17$ cells, regulatory T cells, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, forkhead box protein 3, autosomal dominant hyper-IgE syndrome, signal transducer and activator of transcription 3, IL-17, TGF- β , IL-10

Based on their pioneering work, Mosmann and Coffman¹ proposed some 20 years ago that T_H cells could be divided into 2 distinct subsets, T_H1 and T_H2 , characterized by distinct cytokine profiles and effector functions. T_H1 cells produce large quantities of IFN- γ , elicit delayed-type hypersensitivity responses, activate macrophages, and are highly effective in clearing intracellular

From ^athe Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, and ^bthe Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Woman's Hospital, Harvard Medical School, Boston.

Received for publication March 2, 2009; revised March 23, 2009; accepted for publication March 26, 2009.

Reprint requests: Hans D. Ochs, MD, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle Children's Research Institute, 1900 Ninth Ave, C9S-7, Seattle, WA 98101. E-mail: allgau@u.washington.edu, hans.ochs@seattlechildrens.org.

^{© 2009} American Academy of Allergy, Asthma & Immunology

ms used
Autosomal dominant hyper-IgE syndrome
Autoimmune regulator gene
Autoimmune polyendocrinopathy, candidiasis, ectodermal
dystrophy
Forkhead box protein 3
α-1, 3-Fucosyltransferase VII
Immune dysregulation, polyendocrinopathy, enteropathy,
X-linked
Retinoic acid-related orphan receptor y T
Signal transducer and activator of transcription
T-box transcription factor
Regulatory T
Wiskott-Aldrich syndrome
WAS protein

pathogens. T_H2 cells, on the other hand, produce IL-4, IL-5, IL-13, and IL-25 and are important for IgE production, eosinophilic inflammation, and the clearance of helminthic parasite infections.² In light of recent data, the $T_H 1/T_H 2$ dichotomy is now being revisited. The discovery of the IL-17 family of cytokines and the analysis of IL-23-mediated effector functions on T cells have suggested the existence of an additional subset of CD4⁺ T cells that produce IL-17 and for this reason were designated $T_{\rm H}17$ cells.³⁻⁶ The independence of the $T_{\rm H}17$ subset with regard to T_H1 and T_H2 cells was firmly established with the identification of specific cytokines and transcription factors required for lineage differentiation ie the combination of IL-6 and $TGF-\beta^{7-9}$ and the transcription factors retinoic acid-related orphan receptor y $(ROR\gamma t)^{10}$ and signal transducer and activator of transcription (STAT) 3.^{11,12} $T_H 17$ effector functions are distinct from $T_H 1$ and T_H^2 -mediated immunity. T_H^{17} cells appear to be critical for enhancement of host protection against extracellular bacteria and fungi, which are not efficiently cleared by T_H1 and T_H2 responses. In addition, T_H17 cells have emerged as potent mediators of autoimmune disease.

Including the regulatory T (Treg) cell subset,¹³ there are now 4 functionally unique populations of CD4⁺ T cells that are directly involved in the regulation of immune responses to pathogens, allergens, and self-antigens. Any molecular defect involving either the entire CD4⁺ T-cell population, such as severe combined Immunodeficiency, or individual subsets, such as lack of Treg cells¹⁴ or IL-17 cells,¹⁵ might result in human disease (Table I). In this review we explore the biology of T_H17 and Treg cells and their roles in human primary immune deficiency diseases.

DIFFERENTIATION AND FUNCTION OF T_H17 CELLS

Since their discovery, $T_H 17$ cells have been recognized as a unique effector T-cell subset capable of producing IL-17, a cytokine originally cloned in 1995.¹⁶ IL-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines¹⁷ and initiates the recruitment of neutrophils, linking adaptive and innate immunity.¹⁸

Initial studies of $T_H 17$ cell biology performed in mice focused on identifying key factors required for the differentiation and function of $T_H 17$ cells. Early investigations of $T_H 17$ cell development in human subjects suggested that it might differ from that observed in the mouse¹⁹⁻²¹; more recent reports, however, suggest that major events controlling $T_{\rm H}17$ cell development are similar in both species. $^{22\text{-}24}$

To become $T_H 17$ cells, naive murine $CD4^+$ T cells have to be activated through the T-cell receptor in the presence of TGF- β and IL-6, which leads to the expression of the transcription factor ROR γt .¹⁰ Just as IFN- γ , IL-12, and T-box transcription factor (T-bet) control $T_H 1$ development and IL-4 and GATA3 control $T_H 2$ development, TGF- β , IL-6, and ROR γt drive naive CD4⁺ T cells toward the $T_H 17$ lineage, at least in part, by directly inducing the expression of IL-17.²⁵ The effects of IL-6 on $T_H 17$ cell differentiation are mediated by the transcription factor STAT3, which is required for ROR γt expression (Table I).^{11,12,26} In patients with autosomal dominant hyper-IgE syndrome (AD-HIES) caused by heterozygous *STAT3* mutations that cause the generation of nonfunctional STAT3, ROR γt expression and $T_H 17$ cell development is severely impaired.^{15,27}

In human effector T-cell differentiation, TGF-B and IL-6 are important in the generation of $T_H 17$ cells, but IL-1 β also appears to play a prominent role in the induction of RORyt. This is further enhanced by IL-23.^{19,20} In mice IL-23 seems to play a role only in activated T cells that express the IL-23 receptor and therefore might induce T_H17 differentiation in memory, but not in naive, T cells,²⁸ suggesting that IL-23 upregulates IL-17 production and promotes survival and expansion of activated memory $T_H 17$ cells. If this assumption is correct, IL-23 must be crucial for the maintenance of autoimmune inflammation.^{4,29} A recent in-depth analysis has concluded that TGF-B, IL-23, and the proinflammatory cytokines IL-1B and IL-6 are, in fact, essential mediators of human T_H17 cell differentiation and are required for the expression of IL-17, IL-23 receptor, and RORyt.²³ These observations were confirmed by the Littman laboratory, which reported that human cord blood CD4⁺ T cells, naive by definition, differentiate into $T_H 17$ cells only if TGF- β , IL-1 β , IL-6, and IL-23 or IL-21 are present and that this process requires the expression of RORyt but not T-bet or GATA3.²² These studies demonstrate that TGF- β and IL-6 are important for T_H17 development in both human subjects and mice, whereas IL-1B and IL-23 play a more important role in human subjects than mice.

CYTOKINE PRODUCTION BY T_H17 CELLS

The T_H17 signature cytokines IL-17 (IL-17A) and IL-17F are closely related and form biologic active homodimers or heterodimers. By interacting with its receptor, IL-17 initiates nuclear factor κ B activation, which leads to the transcription of multiple target genes involved in innate immunity. These include chemokines, such as CXCL8 (IL-8) and CCL20; the cytokines IL-6, TNF- α , granulocyte colony-stimulating factor (G-CSF), and GM-CSF; acute-phase proteins, such as C-reactive protein; and antimicrobial peptides and mucins.³⁰ Thus IL-17 plays an important role in antimicrobial defenses by recruiting and expanding the neutrophil lineage and producing antimicrobial factors. In addition, antibody responses to T-dependent antigens are defective in IL-17–deficient mice³¹ and in patients with AD-HIES who lack T_H17 cells.³²

In addition to IL-17, activated murine $T_H 17$ cells produce IL-21, which appears to play an important autocrine role in maintaining $T_H 17$ cell differentiation, similar to the autocrine function of IFN- γ in the generation of $T_H 1$ cells and IL-4 in promoting $T_H 2$ cells (Table I and Fig 1). In mice IL-21 expression is under the control of STAT3, which binds to the IL-21 promoter in $T_H 17$ Download English Version:

https://daneshyari.com/en/article/3200573

Download Persian Version:

https://daneshyari.com/article/3200573

Daneshyari.com