# FGFR2 Abnormalities Underlie a Spectrum of Bone, Skin, and Cancer Pathologies

Masaru Katoh<sup>1</sup>

Fibroblast growth factor receptor (FGFR)2 is regulated on the basis of the balance of FGFs, heparan-sulfate proteoglycans, FGFR2 isoforms, endogenous inhibitors, and microRNAs. FGFR2 signals cross-talk with hedgehog, bone morphogenetic protein, and other regulatory networks. Some cases of congenital skeletal disorders with an FGFR2 mutation show skin phenotypes, including acne, cutis gyrata, and acanthosis nigricans. Gain-of-function mutations or variations of human FGFR2 occur in estrogen receptor-positive breast cancer, diffuse-type gastric cancer, and endometrial uterine cancer. Oral administration of AZD2171 or Ki23057 inhibits in vivo proliferation of cancer cells with aberrant FGFR2 activation in rodent therapeutic models. However, lossof-function mutations of FGFR2 are reported in human melanoma. Conditional Fgfr2b knockout in the rodent epidermis leads to increased macrophage infiltration to the dermis and adipose tissue, epidermal thickening accompanied by basal-layer dysplasia and parakeratosis, and the promotion of chemically induced squamouscell carcinoma. Dysregulation of FGFR2 results in a spectrum of bone and skin pathologies and several types of cancer.

Journal of Investigative Dermatology (2009) 129, 1861–1867; doi:10.1038/jid.2009.97; published online 23 April 2009

#### **INTRODUCTION**

FGFR1, FGFR2, FGFR3, and FGFR4 genes encode receptors for fibroblast growth factors (FGFs) that are involved in fetal morphogenesis, adult tissue homeostasis, and tumorigenesis (Dailey et al., 2005; Eswarakumar et al., 2005; Grose and Dickson, 2005; Wilkie, 2005; Chaffer et al., 2007). The BAG4-PPAPDC1B-FGFR1-TACC1 locus at human chromosome 8p11-p12 and the BAG3-PPAPDC1A-FGFR2-TACC2 at human chromosome 10q26.12-q26.13 are syntenic blocks generated by ancient whole-genome duplications during vertebrate evolution (Katoh and Katoh, 2003b; Itoh and Ornitz, 2004). FGFR1 and FGFR2 are paralogs in the FGFR gene family.

The FGFR2 gene encodes several splice variants by alternative splicing (Dionne et al., 1990; Miki et al., 1991; Savagner et al., 1994; Katoh and Katoh, 2003a). Fibroblast growth factor receptor (FGFR)2b and FGFR2c are representative

FGFR2 isoforms among several splice variants derived from the FGFR2 gene. FGFR2b, in epithelial cells, and FGFR2c, in mesenchymal cells, are almost identical transmembrane-type receptors with extracellular immunoglobulin-like domains and cytoplasmic tyrosine-kinase domain. FGFR2b functions as the receptor for FGF1, FGF3, FGF7, FGF10, and FGF22, whereas FGFR2c functions as the receptor for FGF1, FGF2, FGF4, FGF6, FGF9, FGF16, FGF17, FGF18, and FGF20 (Ornitz et al., 1996; Eswarakumar et al., 2005; Zhang et al., 2006). As the latter half of the third immunoglobulinlike domain of FGFR2b and FGFR2c is completely different because of alternative splicing of mutually exclusive exons, FGFR2b and FGFR2c show distinct ligand specificity.

Heparan-sulfate proteoglycan is a scaffolding protein that mediates the interaction of FGFs and FGFR2 in a tissue-specific manner (Mohammadi et al., 2005; Luo et al., 2006). FGFs that

are associated with heparan sulfate proteoglycan induce dimerization and autophosphorylation of FGFR2 on Y657 in the activation loop of the tyrosine kinase domain to release FGFR2 from autoinhibition (Dailey et al., 2005; Eswarakumar et al., 2005; Chen et al., 2007). FGFR2 then phosphorylates fibroblast growth factor receptor substrate (FRS)2/FRS2a/Sucl-associated neurotrophic factor target 1 (Wang et al., 1996; Hadari et al., 2001) to recruit growth factor receptor-bound protein 2 for the activation of the SOS—Ras-Raf— MEK(MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) kinase)-ERK (extracellular signal-regulated kinase) or the Gab1-phosphoinositide-3 kinase -Akt signaling cascade. Activated FGFR2 directly recruits phospholipase  $C-\gamma$  to catalyze phosphatidylinositol diphosphate to inositol triphosphate and diacylglycerol. Inositol triphosphate induces Ca2+ release from the endoplasmic reticulum,

<sup>&</sup>lt;sup>1</sup>Genetics and Cell Biology Section, National Cancer Center, Tokyo, Japan

Correspondence: Dr Masaru Katoh, Genetics and Cell Biology Section, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo 104-0045, Japan. E-mail: mkatoh-kkr@umin.ac.jp

Abbreviations: BCC, basal cell carcinoma; ER, estrogen receptor; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; miRNA, microRNA; SCC, squamous cell carcinoma; SNP, single nucleotide polymorphism

Received 22 December 2008; revised 1 March 2009; accepted 5 March 2009; published online 23 April 2009

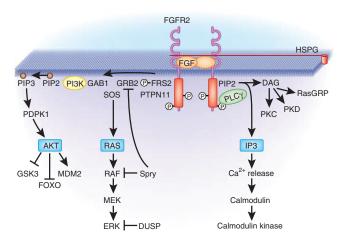



Figure 1. FGFR2 signaling cascades. Fibroblast growth factor receptor (FGFR)2b functions as a receptor for fibroblast growth factor (FGF)1, FGF3, FGF7, FGF10 and FGF22, whereas FGFR2c functions as a receptor for FGF1, FGF2, FGF4, FGF6, FGF9, FGF16, FGF17, FGF18 and FGF20. FGFR2 transduces FGF signals to Ras-extracellular signal-regulated kinase(ERK), phosphoinositide-3 kinase (PI3K)-Akt, Ca<sup>2+</sup>, and diacylglycerol (DAG) signaling cascades. The FGF-ERK signaling cascade is involved in cell proliferation. The FGF-PI3K signaling cascade is involved in cell survival and polarity control. Sprouty inhibits the FGF-ERK signaling cascade at growth factor receptor-bound protein 2 and Raf, whereas dualspecificity phosphatase inhibits the FGF-ERK signaling cascade at ERK. FGFR2 is regulated on the basis of the balance of FGFs, heparan-sulfate proteoglycan (HSPG), FGFR2 isoforms, and endogenous inhibitors.

whereas diacylglycerol activates protein kinase C, protein kinase D, or RasGRP (guanyl nucleotide-releasing protein) signaling cascades. FGFR2 transduces FGF signals to Ras-extracellular signalregulated kinase, phosphoinositide-3 kinase-Akt, Ca<sup>2+</sup>, and diacylglycerol signaling cascades (Figure 1).

FGFR2 is regulated on the basis of the balance of FGFs, heparan-sulfate proteoglycans, FGFR2 isoforms, and endogenous inhibitors (Figure 1). Sprouty inhibits the FGF-extracellular signal-regulated kinase signaling cascade at growth factor receptor-bound protein 2 and Raf, whereas dual-specificity phosphatase inhibits the FGF-extracellular signal-regulated kinase signaling cascade at extracellular signal-regulated kinase. microRNAs (miRNAs) are emerging as crucial regulators of various signaling networks (Bartel, 2004; Negrini et al., 2007; Grosshans and Filipowicz, 2008; Katoh and Katoh, 2008). MiR-433 represses translation of FGF20 in individuals with the C allele of the rs12720208 single nucleotide polymorphism (SNP) (Wang et al., 2008), whereas miR-21 represses translation of functions of FGFR signaling inhibitor, Spry1 (Thum et al., 2008).

Germline Fgfr2b-knockout mice die shortly after birth because of multipleorgan abnormalities, such as agenesis of the lungs, limbs, anterior pituitary gland, and thyroid gland and dysgenesis of the skin, glandular stomach, pancreas, and thymus (De Moerlooze et al., 2000; Revest et al., 2001). Genetic alterations of FGFR2 at germline or somatic level gives rise to congenital disorders and acquired diseases through dysregulation of FGFR2 signaling cascades (Grose and Dickson, 2005; Wilkie, 2005; Katoh, 2008). Genome-wide association studies are opening up new opportunities for research on FGFR2-associated diseases (Easton et al., 2007; Hunter et al., 2007). Here, FGFR2-associated disorders or diseases are summarized in Table 1, and then skin manifestations caused by FGFR2 genetic alterations are reviewed. As melanoma, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are representative skin malignancies, perspectives on these malignancies are also described with an emphasis on FGFR2 genetics.

#### **HUMAN DISORDERS OR DISEASES ASSOCIATED WITH FGFR2**

### Congenital skeletal disorders

FGFR2c is expressed on mesenchymal cells during the early phase of longbone formation, known as the me-

senchymal condensation process. FGFR2 is also expressed on preosteoblasts and osteoblasts during the later phase of bone formation (Eswarakumar et al., 2002). The nuclear factor-Y transcription factor binds to the evolutionarily conserved CCAAT motif in the proximal promoter region of FGFR2 gene, and is involved in basal expression of FGFR2 (Sun et al., 2009). Bone morphogenetic protein 2 induces FGFR2 upregulation in C3H10T1/2 embryonic-fibroblast cells; however, the mechanism of the FGFR2 induction by bone morphogenetic protein-Smad signaling remains unclear. As FGFR2 is involved in bone formation, FGFR2 is a causative gene for several congenital skeletal disorders manifested by shortlimbed bone dysplasia or craniosynostosis (Passos-Bueno et al., 1999; Kan et al., 2002; Wilkie, 2005).

The FGFR2 gene is mutated in Crouzon syndrome (Reardon et al., 1994), Jackson-Weiss syndrome (Jabs et al., 1994), Apert syndrome (Wilkie et al., 1995), Pfeiffer syndrome (Rutland et al., 1995), Beare-Stevenson syndrome (Przylepa et al., 1996), and Saethre-Chotzen syndrome (Paznekas et al., 1998). Missense mutations of FGFR2 in congenital skeletal disorders are clustered around the third immunoglobulin-like domain or within the tyrosine kinase domain (Figure 2). Amino-acid substitutions around the third immunoglobulin-like domain induce autocrine FGFR2 activation through altered FGF-binding specificity (Yu et al., 2000), whereas those in the tyrosine kinase domain induce ligandindependent FGFR2 activation by the releasing FGFR2 from autoinhibition (Chen et al., 2007).

#### **Breast cancer**

Gene amplification of the FGFR2 gene occurs in primary breast cancer (Adnane et al., 1991). FGFR2 gene amplification results in overexpression of the FGFR2 gene products, especially Cterminally truncated FGFR2 protein, because of the exclusion of the last exon from the amplicon during the gene amplification process (Katoh and Katoh, 2003a). C-terminally truncated FGFR2 induces constitutive activation of FGFR2 signaling cascades in a

## Download English Version:

# https://daneshyari.com/en/article/3216827

Download Persian Version:

https://daneshyari.com/article/3216827

Daneshyari.com