#### **Abstract:**

Infants and children are commonly brought to the emergency department (ED) with a complaint of acute weakness. A good history and physical are paramount in determining etiology. Once a diagnosis is suspected, tests such as a lumbar puncture and magnetic resonance imaging of the spine will help to further define the etiology and guide therapy. Many causes of acute weakness have the potential for respiratory compromise, and ED practitioners must continually and closely evaluate patients and may choose to electively intubate. This article explores the 2 most common diagnoses made in children presenting with weakness, namely, Guillain-Barré syndrome and transverse myelitis, and briefly discusses other less common etiologies. Effective treatment of these disorders is not possible without prompt recognition of these patterns of weakness and initiation of diagnostic testing in the ED.

### **Keywords:**

Guillain-Barré syndrome; transverse myelitis; spinal cord ischemia; tic paralysis; ischemic myelopathy; compressive myelopathy; pediatric acute weakness

Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL. Reprint requests and correspondence: Lindsey Morgan, MD, Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, IL

E-mail: Imorgan@luriechildrens.org Conflict of interest: The author has no conflicts of interest to disclose.

1522-8401 Published by Elsevier Inc.



# The Child With Acute Weakness

## **Lindsey Morgan, MD**

cute weakness is a fairly common presenting symptom of children in the emergency department (ED). The differential diagnosis is broad, but key pieces of the history and physical examination will help to localize the disease process and aid in making the diagnosis. The 2 most frequently encountered disorders in the ED causing acute weakness are Guillain-Barré syndrome (GBS) and acute transverse myelitis, which will be the focus of this article. Other less common disorders are summarized in Table 1. Despite the range of potential etiologies (inflammatory, vascular, traumatic, compression of the spinal cord [intradural or extradural], and infectious), an understanding of basic neuroanatomy and common disease features can help focus the diagnostic approach for the ED clinician.

Infants and preschool age children may have nonspecific symptoms of irritability, restlessness, waking repeatedly from sleep, refusal to walk and frequently wanting to be held, or loss of previously attained milestones.<sup>2</sup> Assessing a sensory level can be challenging in young children, but recognizing consistent landmarks such as the clavicle (C4), nipple (T4), umbilicus (T10), and inguinal ligament (T12) can help. Bedside examination of rectal tone, bladder retention by use of bladder ultrasound, respiratory status in older cooperative patients with use of negative inspiratory force, and close observation of vital signs are paramount for patients with acute weakness in the ED.

If the patient's examination demonstrates a sensory level, one must be suspicious for a spinal cord lesion, and urgent magnetic resonance imaging (MRI) is the imaging modality of choice. Table 2 illustrates examination findings in upper motor neuron vs lower motor neuron disorders. Acute transverse myelopathy (neurologic dysfunction of the spinal cord, in contrast to radiculopathy, dysfunction of nerve roots, and neuropathy, peripheral nerve dysfunction) is a medical emergency in children and adults.

## **GUILLAIN-BARRÉ SYNDROME**

#### **Background and Presentation**

Guillain-Barre is an acute monophasic inflammatory demyelinating polyneuropathy characterized by rapidly progressive, junction

| Location of<br>Disease | Category     | Key History and<br>Exam Findings   | Key Laboratory and<br>Electrodiagnostic Findings | Examples                 |
|------------------------|--------------|------------------------------------|--------------------------------------------------|--------------------------|
| Spinal cord            | Myelopathy   | Acute flaccid paralysis            |                                                  | Myelitis                 |
|                        |              | Loss of sphincter tone             |                                                  | Infarction               |
|                        | Motor neuron | Initial areflexia below the lesion |                                                  | Trauma                   |
|                        | disease      |                                    |                                                  | Tumor                    |
| Muscle                 | Myopathy     | Proximal weakness                  | Increased creatine kinase                        | Muscular dystrophy       |
|                        |              | Normal sensation                   | Diminished duration of motor                     | Postviral myositis       |
|                        |              | May have pain, rash                | potentials, reduced recruitment on EMG           | Juvenile dermatomyositis |
| Peripheral nerve       | Neuropathy   | Distal weakness                    | Increased CSF protein, normal CSF WBC            | GBS                      |
|                        |              | Diminished reflexes                | Tick                                             | Tick paralysis           |
|                        |              | Ophthalmoplegia, ataxia            | Decreased amplitude on NCS with axonal variants  | MF variant of GBS        |
| Neuromuscular          | Neuropathy   | Fatiguable weakness                | Fatigue with stimulation on EMG                  | Botulism                 |

TABLE 1. Localization and characteristics of weakness along the neuroaxis.

NCS indicates nerve conduction studies; MF, Miller-Fisher; EMG, electromyelogram; CSF, cerebrospinal fluid; WBC, white blood cell; GBS; Guillain-Barre Syndrome. Data from Cirillo.

+ Bulbar symptoms, ptosis

ascending, essentially symmetric weakness and areflexia in a previously well child, which peaks in less than 4 weeks, is followed by a plateau phase, and then has a slow recovery.4 The disease is

**TABLE 2.** Upper motor neuron versus lower motor neuron signs.

| Characteristics                                                               | Upper Motor<br>Neuron                                                                                                                                              | Lower Motor<br>Neuron                                                                                                                                                                     |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesion                                                                        | Interrupt a neural pathway at a level above the anterior horn cell: motor pathways in cerebral cortex, internal capsule, cerebral peduncle, brainstem, spinal cord | Interrupt the spinal<br>reflex arc. Clinical<br>features result from<br>lesion of spinal<br>motor neurons,<br>motor root, or<br>peripheral nerve                                          |
| Reflexes<br>Babinski<br>Muscle tone<br>Weakness<br>Fasciculations<br>Etiology | Increased Yes Increased; spasticity Yes No Spinal cord lesions, stroke, multiple sclerosis, other acquired brain injuries                                          | Decreased<br>No/mute<br>Decreased; flaccid<br>Yes<br>Yes<br>Guillain-Barré, early<br>spinal cord shock,<br>amyotrophic lateral<br>sclerosis, botulism,<br>polio, cauda<br>equina syndrome |

thought to be caused by the autoimmune-mediated destruction of the peripheral myelin sheath and inflammation of the nerve roots. It is triggered by a preceding respiratory or gastrointestinal infection in up to two thirds of cases. 5-8 Campylobacter jejuni is the most frequently found gastrointestinal pathogen in patients with GBS. Incidence rates vary between 0.38 and 2.53 per 100 000 based on region of the world. The overall rate for GBS in children is 0.34 to 1.34 per 100 000. 5,9 There are several variants based on examination and electromyography and nerve conduction velocity studies. The Miller-Fisher variant presents as a triad of ataxia, ophthalmoplegia, and areflexia. Overall, acute demyelinating inflammatory polyneuropathy is the most common variant occurring in 72 to 95% of cases. <sup>7,8,10</sup>

Myasthenia gravis

Fatigue with stimulation on EMG

There is male predominance in GBS, and the mean age of onset is 4.9 (range, 5-7.5) years. 4-7,10,11 Presenting signs include weakness and areflexia or hyporeflexia in nearly all patients as well as neuropathy, with myalgias or leg pain and paraesthesias. 3,4,6-8,10 Children with GBS experience pain to a much higher extent than adults. Ataxia may also be present due to weakness or associated with the Miller-Fisher variant.<sup>3</sup> Sensory symptoms and cranial neuropathies including facial palsy, ophthalmoplegia, or bulbar involvement occur in up to half of patients. 3-6 Patients may be nonambulatory or have bladder or bowel sphincter disturbance at presentation. 4,8

Guillain-Barré syndrome must be differentiated from transverse myelitis (TM) and anterior spinal

## Download English Version:

## https://daneshyari.com/en/article/3235739

Download Persian Version:

https://daneshyari.com/article/3235739

<u>Daneshyari.com</u>