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h i g h l i g h t s

• We present a measure of the difference in the latent orders of two variables.
• We present an algorithm for finding the minimum of this measure.
• We present a statistical test for the null hypothesis that the latent orders are the same.
• The test can be applied to any form of data, as long as an appropriate statistical model can be specified.
• The test allows hypothesis testing for designs analyzed with state trace analysis.
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a b s t r a c t

It is sometimes the case that a theory proposes that the population means on two variables should have
the same rank order across a set of experimental conditions. This paper presents a test of this hypothesis.
The test statistic is based on the coupled monotonic regression algorithm developed by the authors. The
significance of the test statistic is determined by comparison to an empirical distribution specific to each
case, obtained via non-parametric or semi-parametric bootstrap. We present an analysis of the power
and Type I error control of the test based on numerical simulation. Partial order constraints placed on
the variables may sometimes be theoretically justified. These constraints are easily incorporated into the
computation of the test statistic and are shown to have substantial effects on power. The test can be
applied to any form of data, as long as an appropriate statistical model can be specified.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider an experiment in which data are obtained on two dif-
ferent variables across k different conditions. We would like to
know if these data are drawn from populations whose means on
the two variables have different orders. That is, we ask if the vari-
ables have unequal latent orders. This question arises in the the-
ory of state trace analysis (STA) where inferences concerning the
number of latent variables underlying changes in two or more
dependent variables depend on the ordinal arrangements of their
respective population means (Bamber, 1979; Prince, Brown, &
Heathcote, 2012a). STA contrasts a one-dimensionalmodel, inwhich
changes in the dependent variables are mediated by one latent
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variable, and a two-dimensional model, in which changes are me-
diated by more than one latent variable (Loftus, Oberg, & Dillon,
2004; Newell & Dunn, 2008). Under the assumption of the one-
dimensional model that each dependent variable is a (distinct)
monotonic function of the single latent variable, this model pre-
dicts that the latent orders of the two variables are equal. It follows
that if the variables have different latent orders across a set of ex-
perimental conditions then the effects must be mediated by more
than one latent variable.

Implementation of STA requires a statistical procedure to test
whether two sets of population means have the same order
across a set of conditions. To our knowledge, at least three
previous approaches to this problem have been proposed in the
psychological literature. The first of these, described by Loftus et al.
(2004), relies on reducing sampling error to near zero thereby
using the observed sample means as a proxy for the population
means. Clearly, this approach cannot be applied in situations with
non-negligible sampling error and it lacks a means of quantifying
when the sampling error is small enough to be ignored. The second
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approach, described by Pratte and Rouder (2012), quantifies the
effects of sampling error but is limited to particular theory-
dependent variables and to a fixed two-by-two factorial design.
The third approach, described by Prince et al. (2012a), uses
Bayesian model selection to test whether two sets of population
means have the same or different orders. While the approach is in
principle quite general, the particular implementation described
by Prince et al. (2012a) applies only to binomial data and to a
relatively constrained factorial design. We discuss this approach
in greater detail below and compare it to the test that we develop.

The test we present here is a null hypothesis statistical test
(NHST), based on the computation of an empirical p-value of the
data given the null hypothesis. Despite the well known problems
with p-values (Wagenmakers, 2007), the evidence provided by
them remains useful; e.g., it predicts future replicability (Open
Science Collaboration, 2015).

The outline of the paper is as follows. First, we describe
more fully the logic of our statistical test, based on an extension
of monotonic regression (Burdakov, Dunn, & Kalish, 2012). In
so doing, we introduce the concept of partial order constraints
and foreshadow how they may be used to increase statistical
power. Second, we describe a null hypothesis significance test
of the equality of latent orders based on a bootstrap resampling
procedure for estimating the empirical sampling distribution of
the test statistic. Third, we examine the statistical power of our
procedure for a fully randomized design with and without partial
order constraints. Finally, we extend the procedure to binomial
data and compare it to the Bayesian model selection approach
developed by Prince et al. (2012a).

The orders of sample and population means

Consider two different dependent variables, x and y, ob-
served across k different experimental conditions. Let x1, . . . , xk,
y1, . . . , yk, be the k population means of each variable and let
X1, . . . , Xk, Y1, . . . , Yk, be the corresponding samplemeans.Wede-
fine the (latent) order of x as a permutation, O(x) = (i1, i2, . . . , ik),
such that, xi1 ≤ xi2 ≤ . . . ≤ xik .Wewish to test the hypothesis that
O(x) = O(y), given the data. A desirable feature of such a test is that
it should be sensitive to both the number and magnitude of differ-
ences in the two orders. Intuitively, given equal latent orders, nu-
merically small violations of equality of the orders of the observed
means aremore likely than numerically large violations. This prop-
erty is a feature of monotonic (or isotonic) regression (Robertson,
Wright, & Dykstra, 1988). Our test is based on this method.

Monotonic regression

Monotonic regression addresses the problem of finding the
best approximation, X̂ , to a set of observed values, X , under the
constraint that O(X̂) is known, either completely or partially. Let K
be the set of integers, {1, 2, . . . , k}.We represent a partial (or total)
order onK bymeans of a subset of orderedpairs (i, j) ∈ E ⊆ K×K .1

An order, O(X̂), is consistent with E if X̂i ≤ X̂j,∀(i, j) ∈ E. Formally,
let X be a set of k values, let v be a set of corresponding weights,
and let E be a partial order. Then monotonic regression finds a
set of values, X̂ , consistent with E, that best approximates X in
a weighted least-squares sense. That is, X̂ solves the monotonic
regression (MR) problem,

min
k

i=1

vi(Xi − X̂i)
2, subject to X̂i ≤ X̂j, for all (i, j) ∈ E. (1)

1 Unless otherwise stated, a partial order, E, is assumed to be transitively closed.

The choice ofweights is critical for obtaining ameaningful ‘best’
X̂ . In this respect, we are guided by the property that the solution
of Eq. (1) is the maximum likelihood estimate if the observations
in each condition are independent and normally distributed with
weights given by the precision of the data weighted by the number
of observations in each condition (Robertson et al., 1988). That is,

vi =
nxi

S2Xi

wi =
nyi

S2Yi

(2)

where S2Xi is the sample variance of variable x in condition i and S2Yi
is the sample variance of variable y in condition i.

In many situations the observations in each condition are
not independent, as when conditions are manipulated within
participants rather than between. In this case the maximum
likelihood estimate depends on the entire covariance matrix and
the sets of weights, vi andwi, are replaced by appropriatematrices.
For this reason, we generalize Eq. (2) in the followingway. Suppose
there are g groups of participants of size ni, i = 1, . . . , g , each
measured under m different conditions on variable x. The total
number of conditions is thus k = gm. Let Si be them×m covariance
matrix for group i. Then the corresponding weight matrix is given
by the following block-diagonal matrix,

V =

n1S1−1 · · · 0
...

. . .
...

0 · · · ngSg−1

 . (3)

The weight matrix, W , for variable y is similarly defined.2 S−1i
approximates the inverse of the population covariance matrix,
6−1i . A better estimate of6−1i can be obtained by first ‘shrinking’ Si,
which reduces the unreliable off-diagonal elements but does not
necessarily set all of them to zero (Ledoit & Wolf, 2004). We use
Ledoit–Wolf method to adjust the weight matrices in our current
approach.

Let X be a vector of k sample means and let X̂ be a vector of
values. Then, with the weight matrix V defined by Eq. (3), the MR
problem is given by,

min

X − X̂

T
V


X − X̂


, subject to X̂i ≤ X̂j, for all (i, j) ∈ E. (4)

We write the problem corresponding to Eq. (4) as MR(X, V , E)

and the minimum value as ω(X, V , E), or, in shorthand form, as
ωX . Finding the solution to the MR problem is not trivial, but fast
algorithms have been developed. If E is a total order then the MR
problem can be solved using the pool-adjacent-violators algorithm
(PAVA), a version of whichwas used in the original development of
non-metric multidimensional scaling (Kruskal, 1964). Otherwise,
the problem as posed in Eq. (4) can be solved using quadratic
programming algorithms (de Leeuw, Hornik, & Mair, 2009). The
functions lsqlin (equivalently, quadprog) and lsei implement this
algorithm in MATLAB R⃝ and R (R Core Team, 2013) respectively.
In addition, a rapid approximate solution may also be obtained
using the generalized pool-adjacent-violators (GPAV) algorithm
developed by Burdakov, Sysoev, Grimvall, and Hussian (2006).

2 We assume that observations on x and y are themselves independent.
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