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• Cognitive necessities.
• Kernels.
• Similarity measurement.
• Tuning curves.
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a b s t r a c t

Kernel-based methods, and in particular the so-called kernel trick, which is used in statistical learning
theory as a means of avoiding expensive high-dimensional computations, have broad and constructive
implications for the cognitive and brain sciences. An equivalent and complementary view of kernels as
a measure of similarity highlights their effectiveness in low-dimensional and low-complexity learning
and generalization — tasks that are indispensable in cognitive information processing. In this survey, we
seek (i) to highlight some parallels between kernels in machine learning on the one hand and similarity
in psychology and neuroscience on the other hand, (ii) to sketch out new research directions arising
from these parallels, and (iii) to clarify some aspects of the way kernels are presented and discussed
in the literature that may have affected their perceived relevance to cognition. In particular, we aim
to resolve the tension between the view of kernels as a method of raising the dimensionality, and the
various requirements of reducing dimensionality for cognitive purposes. We identify four fundamental
constraints that apply to any cognitive system that is chargedwith learning from the statistics of itsworld,
and argue that kernel-like neural computation is particularly suited to serving such learning and decision
making needs, while simultaneously satisfying these constraints.

© 2015 Elsevier Inc. All rights reserved.

1. Motivation and plan

The concept of similarity is widely used in psychology.
Historically, in a philosophical tradition dating at least back to
Aristotle, it has served as a highly intuitive, unifying slogan for a
variety of phenomena related to categorization. Here’s how Hume
put it in the Enquiry (1748):

ALL our reasonings concerning matter of fact are founded on
a species of Analogy, which leads us to expect from any cause
the same events, whichwe have observed to result from similar
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causes. Where the causes are entirely similar, the analogy is
perfect, and the inference, drawn from it, is regarded as certain
and conclusive. [. . . ] Where the objects have not so exact a
similarity, the analogy is less perfect, and the inference is less
conclusive; though still it has some force, in proportion to the
degree of similarity and resemblance.

In the past century, psychologists have turned similarity into a
powerful theoretical tool, most importantly by honing the ways in
which similarity can be grounded in multidimensional topological
or metric representation spaces (see Osgood, 1949 for an early
example) or in situations where a set-theoretic approach may
seem preferable (Tversky, 1977).

Sometimes criticized as too loose to be really explanatory (e.g.,
Goodman, 1972), the concept of similarity has eventually been
given amathematical formulation, including a derivation from first
principles of the fundamental relationship between similarity and
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generalization, and its empirical validation (Shepard, 1987). The
mathematical developments, in particular, have solidified simi-
larity’s status as a theoretical-explanatory construct in cognitive
science (Ashby & Perrin, 1988; Edelman, 1998; Goldstone, 1994;
Medin, Goldstone, & Gentner, 1993; Tenenbaum & Griffiths, 2001;
for a recent review, see Edelman & Shahbazi, 2012).

In the present paper, we explore the parallels between the
psychological construct of similarity and its recent mathematical
treatment in the neighboring discipline ofmachine learning,where
a family of classification and regressionmethods has emerged that
is based on the concept of a kernel (Schölkopf & Smola, 2002).
Insofar as kernels (described formally in a later section) involve
the estimation of distances between points or functions (Jäkel,
Schölkopf, &Wichmann, 2008, 2009), they are related to similarity.
At the same time, there seems to be a deep rift between the two.

On the one hand, similarity-based learning and generalization
has long been thought to require low-dimensional representations,
so as to avoid the so-called ‘‘curse of dimensionality’’ (Bellman,
1961; Edelman & Intrator, 1997, 2002), as well as to promote the
economy of information storage and transmission (Jolliffe, 1986;
Roweis & Saul, 2000). Moreover, as no two measurements of the
state of the environment are likely to be identical, some abstraction
is necessary before learning becomes possible, which calls for
information-preserving dimensionality reduction (Edelman, 1998,
1999). On the other hand, the best-known kernel methods, based
on the Support Vector Machine idea (Cortes & Vapnik, 1995;
Vapnik, 1999), involve a massive increase in the dimensionality of
the representation prior to solving the task at hand.

We attempt to span this rift by seeking a common denominator
for some key ideas – and, importantly, their mathematical treat-
ment – behind similarity and kernels. In service of this goal, we
first identify, in Section 2, four fundamental constraints on cogni-
tion, having to do with (i) measurement, (ii) learnability, (iii) cate-
gorization, and (iv) generalization. In Section 3, we then show that
while on an abstract-functional or task level these constraints ap-
peal to the concept of similarity, on an algorithmic computational
level they call for the use of kernels. Section 4 revisits some stan-
dard notions from the similarity literature in light of this observa-
tion. In Section 5, we illustrate the proposed synthesis by pairing
the methods that it encompasses with a range of cognitive tasks
and suggest some ways in which these methods can be used to
further our understanding of computation in the brain. Finally, Sec-
tion 6 offers a summary and some concluding remarks.

2. Fundamental constraints on cognition

2.1. A fundamental constraint on measurement

Perception in any biological or artificial system begins with
some measurements performed over the raw signal (Edelman,
2008, ch.5). In mammalian vision, for instance, the very first
measurement stage corresponds to the retinal photoreceptors
transducing the image formed by the eye’s optics into an array of
neural activities. The resulting signal is extensively processed by
the retinal circuitry before being sent on to the rest of the brain
through the optic nerve.

Effectively, a processing unit at any stage in the sensory
pathway and beyond ‘‘sees’’ theworld through somemeasurement
function φ(·). Importantly, the measurement process is, at least in
the initial stages of development, uncalibrated, in the sense that the
precise form of the measurement function is not known – that is,
not explicitly available – throughout the system. For example, the
actual, detailed weight, timing profiles, and noise properties of the
receptive field of a sensory neuron are implicitly ‘‘known’’ to the
neuron itself (insofar as these parameters determine its response
to various types of stimuli), but not to any other units in the system.

Indeed, for the usual developmental reasons, those parameters
vary from one neuron to the next in ways that are underspecified
by the genetic code shared by all neurons in an organism.

Even if the system learns to cope with this predicament (as
suggested by some recent findings; Pagan, Urban, Wohl, & Rust,
2013), such learning can only be fully effective if driven by
calibrated stimuli, which are by definition not available in natural
settings. Moreover, a system that relies on learning, be it as part
of its development or as part of its subsequent functioning, it must
either (i) simultaneously learn the structure of the data and its own
parameters, or (ii) learn the former while being insensitive to the
latter.

These considerations imply the following fundamental chal-
lenge:

Measurement Any system that involves perceptual measurement
is confronted with unknowns that it must learn to tol-
erate or factor out of the computations that support the
various tasks at hand, such as learning and categorization
(see Tables 4 and 5).

To the best of our knowledge, this is the first statement of the
measurement constraint in the literature. On a somewhat related
note, Resnikoff (1989) observed that the general measurement
uncertainty principle, as formulated by Gabor (1946), is important
for understanding perception. For a recent review of uncertainty
in perceptual measurement and the role of receptive field learning
under this uncertainty, see (Jurica, Gepshtein, Tyukin, & van
Leeuwen, 2013).

2.2. Three fundamental constraints on learning

In learning tasks, the need to generalize from labeled to unla-
beled data (in supervised scenarios) or from familiar to novel data
(in unsupervised scenarios) imposes certain general constraints
on the computational solutions (Geman, Bienenstock, & Doursat,
1992). Although here we focus on categorization, where the goal
is to learn class labels for data points, these constraints apply also
to regression, where the goal is to learn a functional relationship
between independent and dependent variables (Bishop, 2006).

According to the standard formulation in computational
learning science, the problem of learning reduces, on the most
abstract level of analysis, to probability density estimation (Chater,
Tenenbaum, & Yuille, 2006). Indeed, the knowledge of the joint
probability distribution over the variables of interest allows
the learner to compute, for a query point, the value of the
dependent variable, given the observed values (measurements)
of the independent variables.3 This basic insight serves as a
background for the present discussion.

In this section, we briefly discuss the constraints that apply
to (i) the computation of similarity among stimuli, (ii) to the
dimensionality of representation spaces, and (iii) to the complexity
of the decision surfaces.

2.2.1. Similarity
Estimating the similarity among stimuli is arguably the most

important use towhich sensory data could be put. Asmentioned in
the introduction, similarity constitutes the only principled basis for
generalization Shepard (1987). Therefore, any non-trivial learning
from experience (Edelman, 1998; Edelman & Shahbazi, 2012;
Hume, 1748; Shepard, 1987) faces the following challenge:

3 In this sense, the joint probability distribution over the representation space is
themost that can be known about a problem. To knowmore – for instance, to know
the directions of causal links between variables – observation alone does not usually
suffice (Pearl, 2009; Steyvers, Tenenbaum,Wagenmakers, & Blum, 2003). This topic
is beyond the scope of the present survey.
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