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h i g h l i g h t s

• We consider decision making with vague probability information.
• We base our discussion on a finite version of the doubling game.
• We develop a quantum probability model for the dynamics of decision making in such a game.
• We present a way in which the model can be applied in scaled-down relevant empirical situations.
• We report empirical results, which allow a preliminary assessment of the methods and manipulations.
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a b s t r a c t

Consider a multi-trial game with the goal of maximizing a quantity Q (N). At each trial N , the player
doubles the accumulated quantity, unless the trial number is Y , in which case all is lost and the game
ends. The expected quantity for the next trial will favor continuing play, as long as the probability that
the next trial is Y is less than one half. Y is vaguely specified (e.g., someone is asked to fill a sheet of paper
with digits, which are then permuted to produce Y ). Conditional on reaching trial N , we argue that the
probability that the next trial is Y is extremely small (much less than one half), and that this holds for any
N . Thus, single trial reasoning recommends one should always play, but this guarantees eventual ruin in
the game. It is necessary to stop, but howcan a decision to stop onN be justified, andhowcanN be chosen?
The paradox and the conflict betweenwhat seem to be two equally plausible lines of reasoning are caused
by the vagueness in the specification of the critical trial Y . Many everyday reasoning situations involve
analogous situations of vagueness, in specifying probabilities, values, and/or alternatives, whether in the
context of sequential decisions or single decisions. We present a computational scheme for addressing
the problem of vagueness in the above game, based on quantum probability theory. The key aspect of
our proposal is the idea that the range of stopping rules can be represented as a superposition state, in
which the player cannot be assumed to believe in any specific stopping rule. This scheme reveals certain
interesting properties, regarding the dynamics of when to stop to play.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The work ofWilliam Estes has had a lasting and profound influ-
ence in the development of psychological theory. One important
contribution was the instigation of a revolutionary transition from
descriptive to quantitative theories, the latter presented precisely
in mathematical language. A mathematical formalization of a psy-
chological process can provide a framework within which to study
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what is possible andwhat is not, identify key theoretical issues, and
provide a guide for future empirical exploration. Our aim fits such
goals: we study an important theoretical problem, in the psychol-
ogy of decision making, and provide a computational framework
for the assumed underlying cognitive processes. We then explore
the properties of the computational framework, derive an empiri-
cal prediction, and experimentally test this.

Consider a ‘doubling game’, in which a player starts with one
unit. On each trial, the player can choose to either stop playing
and take home her winnings or double her accumulated units.
However, if she doubles on trial Y , she loses all and the game
ends. The number of Y has been vaguely specified, e.g., a person
filled a sheet with random digits, permuted them, and so produced
Y (since it is impossible to write an infinite number of digits on
a sheet of paper, the number Y is finite). To justify stopping on
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trial N , the player must think that Prob(N = Y ) is at least 1/2.
But this is always unreasonable. The player can attempt to guess
the probability distribution for Y (i.e. a Bayesian prior). However,
having successfully reached trial N − 1 without losing, she will
surely form a posterior distribution that predicts considerable
probability for numbers above N . Why? Because, seeing N − 1
ensures that the number of digits written down were sufficiently
numerous to generate N − 1. Knowing this makes it likely that
numbers higher than N − 1 will be produced. Thus, the paradox
in the doubling game is caused by the vague specification of Y
(e.g., Bonini, Osherson, Viale, &Williamson, 1999). Note that a prior
could be chosen that will delay the stopping decision to such a
large trial number (e.g. 100**(100**100)) that ruin would certainly
occur, but this prior is not helpful. Whichever way one attempts
to specify a prior on Y , we suggest that this will not resolve the
paradox.

The prescription to continue playing is paradoxical, since
eventually Y will be reached. This game is a finite version of the
one in St. Petersburg’s paradox, in which a fair coin is tossed on
every trial, tripling the accumulated payoff on obtaining e.g. heads.
The problem is general, e.g., it can be recast in a single trial version
and can involve payoff functions, which recommend playing,
regardless of the value of Prob(next guess = Y ) and regardless
of utility functions incorporating e.g. loss aversion or diminishing
returns (the latter was Bernoulli’s approach in dealing with St.
Petersburg’s paradox).

We think that there does not now exist, and may never exist,
a normative theory of rationality that could be used to provide an
ideal basis for decision making. Rather, for a particular problem,
people explore different perspectives of reasoning, in an attempt to
identify the best course of action. When the different perspectives
converge, it becomes easy to resolve the decisionmaking problem.
When they diverge, then inevitably the decision making process
is more difficult. In the doubling game, a local trial perspective
mandates doubling. But is this reasoning correct? A player will
attempt to verify correctness by trying out other perspectives.
One is a global perspective and leads the player to ask whether
he will gain if he continues to play indefinitely. However, since
this guarantees eventual ruin, the global perspective recommends
stopping at some trial. Thus, here, the two different perspectives,
local and global, are in conflict.

How does one deal with conflicting, and yet plausible, lines of
reasoning (or goals, or perspectives) for a problem? Notwithstand-
ing the normative problems, we expect that human decision mak-
ers in a doubling game will eventually stop playing. We develop a
descriptive model of decision making in a doubling game, so as to
provide a basis for further systematic study of this behavior. We
propose to approach the problem using quantum probability (QP)
theory, by which we mean the probabilistic calculus of quantum
mechanics, not specifically tied to physics (e.g., Aerts & Gabora,
2005 and Atmanspacher, Romer, &Wallach, 2006). QP theory is ba-
sically a way to quantify uncertainty, which is alternative to clas-
sical, Bayesian probability (CP) theory. Predictions from QP and CP
models sometimes converge, but QP theory has some properties
that distinguish it from CP theory. For example, in QP theory prob-
abilistic assessment can be strongly order and context dependence
and superposition states exist, for which it is not possible to make
precise statements regarding certain questions. Thus, QP models
have usually been proposed to cover empirical situations forwhich
it has been difficult to develop satisfactory CP models (e.g., Aerts &
Gabora, 2005, Bruza, Kitto, Nelson, & McEvoy, 2009, Busemeyer &
Bruza, 2012, Busemeyer, Pothos, Franco, & Trueblood, 2011, Khren-
nikov, 2010, Pothos & Busemeyer, 2009, Trueblood & Busemeyer,
2011 and Wang & Busemeyer, 2013).

One motivation for adopting QP theory here is that, tradition-
ally, QP cognitive models have fared well in situations which ap-
pear paradoxical from a CP perspective (Busemeyer & Bruza, 2012;

Pothos & Busemeyer, 2009; Wang & Busemeyer, 2013). For exam-
ple, in a QP model many different lines of reasoning can co-exist
in a superposition state, until a judgment is made, at which point
one approach emerges to govern the decision. In a doubling game,
belief regarding the next stopping rule could simultaneously in-
corporate biases both about large stopping rules (favoring a local
perspective of the game, according to which it is advantageous to
continue playing for as long as possible) and smaller stopping rules
(favoring the global perspective of the game and a bias to stop).
However, as we discuss, we think that many of the ideas in the
present QP model can be implemented classically. Another mo-
tivation is that, because most decision making models have, un-
til recently, focused on traditional methods (based on traditional
probability measures), it is interesting to provide some ground-
work for howaQP theory approach canhandle decisionmaking be-
havior, since, overall, both CP theory and the QP theory approaches
have merits and demerits and both are worth implementing and
testing in empirical research. A final motivation is that the QP
model enabled the extraction of analytical solutions fairly easily.

The specification of the model allows us to consider aspects of
a doubling game, which may impact on behavior. Accordingly, we
next develop a simple empirical task, which tests a corresponding
prediction. We note that such tasks are likely to involve consider-
able conceptual andmethodological challenges, but their develop-
ment is essential in order to appreciate how naïve observers cope
with problems that are problematic from a normative perspective.

Intuition regarding behavior in the doubling game enables the
following assumptions, to guide model construction. First, there is
a bias to continue playing on any particular trial. This reflects the
local perspective of the game, since the game is set up in such a
way that it always makes sense to continue playing. For small trial
numbers, this is because of the extremely small probability that
such numbers could be Y . For larger trial numbers, as argued, if a
player has already observed N − 1, she is unlikely to believe that
Y would be N . Second, a player creates a guess for when to stop.
Regardless of how such a guess is created, we assume that, when
the player reaches this stopping rule, she stops playing. Finally, as
the game proceeds, and obviously as long as the game has not yet
ended in ruin, we assume that the player might decide to change
her stopping rule. For example, if the player had decided to stop
after 10 trials, and she has alreadywon in the first nine trials,would
this not make it more likely that she will continue playing? Then, a
cognitive model involves a specification of how the evidence from
winning successive trials impacts on confidence for the (latest)
stopping rule and potentially leads to its revision.

2. Model processes and results

We first describe the model mostly conceptually and then
develop the mathematical details. In the mathematical details
below, a lot of the arithmetic is simple linearmatrix algebra;where
relevant, wemake some corresponding notes, whichwill hopefully
make the material more accessible.

We represent information about the next guess regarding the
appropriate stopping rule, with a vector |ψ⟩, called the state vector
(because it describes the state), in a complex Hilbert space, such
that each one of its axes is a possible stopping rule. Hilbert spaces
are the vector spaces employed QP theory; they are complex
vector spaces, with some convergence properties as well. Complex
numbers (i.e., numbers of the form a + i · b, i =

√
−1) are

employed in QP theory, as a mathematical convenience. All the
aspects of a system that can be observed, called, surprisingly
enough, observables, are guaranteed to have real values. Also, the
set of axes we employ to characterize a Hilbert space are more
accurately described as basis vectors, i.e., a set of orthonormal
vectors, such that any vector in the space can be expressed
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