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h i g h l i g h t s

• Link hazard functions to the probabilities in a Markov model.
• Show that a Markov chain is linked to a Weibull model with a shape parameter c = 1.
• Show that a general Markovian model rather than a Markov chain is needed.
• Develop a Markovian model for the Chechile et al. (2012) IES model.
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a b s t r a c t

With the development of stimulus sampling theory (SST), William K. Estes demonstrated the importance
of Markov chains for capturing many important features of learning. In this paper, learning and memory
retention are reexamined from a hazard function framework and linked to the stochastic transition
matrices of a Markov model. The probabilities in the transition matrix are shown to be discrete hazard
values. In order for the stochastic matrix to be a homogeneous Markov chain, there is a requirement that
the transition matrix values remain constant. Yet for some learning and memory retention applications,
there is evidence that the transition matrix probabilities are dynamically changing. For list learning,
the change in hazard is attributed in part to differences in the learning rate of individual items within
the list. Even on an individual basis, any variability in item difficulty whatsoever is enough to induce a
change in hazard with training. Another analysis was done to delineate the hazard function for memory
loss. Evidence is again provided that the hazard associated with the loss of memory is systematically
changing. A Markov chain is not a suitable model when there are dynamic changes in the hazard.
However, for both the learning and memory applications, a general Markovian model can be used, where
transition probabilities are a function of trial number or interpolated event number. Finally, a more
complex, four-state application is considered. This application is based on the Chechile, Sloboda, and
Chamberland (2012) multinomial processing tree model called the IES model. The IES model obtains
probability estimates for the representation of target information in memory in terms of four possible
states—explicit memory, implicit memory, fractional memory, and non-storage. Stochastic matrices for
the IES model are provided and are shown to yield new insights about implicit memory.

© 2013 Elsevier Inc. All rights reserved.

Preface to the paper

As one of the originators of Mathematical Psychology, William
K. Estes had a keen interest in the careers of scientists who
worked in this field. For many in mathematical psychology, Bill
was an intellectual father figure or grandfather figure. He read and
commented on our papers. He faithfully listened to our conference
presentations. He encouraged us to keep asking good questions.
Also for 20 years, Bill was a close neighbor to the first author
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of this paper; Harvard University and Tufts University are about
three miles apart. During that period there were numerous visits
to share ideas. This paper is a belated outgrowth from several
conversations with Bill about how hazard functions are a powerful
alternative framework for understanding stochastic processes and
from that perspective there were some new insights that can
be gleaned about some classic problems. In this paper, hazard
functions are used to reexamine Markovian processes for learning
and memory.

1. Introduction

The utilization of stochastic models to study learning and
memory should be ranked very high among themany technical and
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conceptual contributions of William K. Estes. Stimulus sampling
theory (SST) was one of the earliest models in this area (Atkinson
& Estes, 1963; Estes, 1959a,b; Estes & Burke, 1953; and Neimark &
Estes, 1967). In the Estes and Suppes (1974) paper the axiomatic
foundations for SST were delineated. Some of those axioms made
explicit the properties that link SST to finite state Markov chain
models, i.e., ‘‘. . . we turn to the proof of what is probably the
most important general theorem of stimulus sampling theory,
namely, that under very broad conditions an appropriately chosen
sequence of events is a Markov chain’’ (Estes & Suppes, 1974, p.
174.). Of course generalMarkov processes andMarkov chainswere
already well established topics in probability theory prior to their
use in psychology. The topic of Markov processes was developed
in the first decade of the 20th century, and Markov models were
prominently featured in the Feller (1950) textbook that had a
strong influence on the early work in mathematical psychology.
Markovmodels remain a fundamental technique in the conceptual
toolbox of mathematical psychologists (Brainerd, 1985). Markov
models are discussed in virtually all the mathematical psychology
textbooks (viz., Busemeyer & Diederich, 2010; Coombs, Dawes,
& Tversky, 1970; Laming, 1973; Levine & Burke, 1972; Restle &
Greeno, 1970; Roberts, 1976; Wickens, 1982).1

The concept of hazard functions had a later introduction in
the mathematical and psychological literatures. Hazard functions
were originally developed in actuarial statistics (Steffensen, 1930),
but it took some time before hazard functions were discussed in
general probability theory. For example, hazard functionswere not
discussed in either volume of the classic textbooks on probability
theory by Feller (1950, 1966). Consequently, there was some delay
before hazard functions were used in psychology. Townsend and
Ashby (1978) first used hazard functions in psychology, but their
application was in the context of information processing models
for response time. Although the interest in hazard functions grew
in the response time literature, the use of hazard function for
the study of learning and memory developed slowly (Chechile,
1987, 2006). Consequently, hazard functions were not well known
tools at the time of the development of SST. There are now
many established facts about hazard functions (Chechile, 2003,
2006: Luce, 1986; and Townsend & Ashby, 1983). Hazard functions
also have a connection to Markov models, and this connection is
explored in the present paper. In general Markov chain models
impose some constraints on the hazard function, and conversely
some hazard functions are not consistent with a Markov chain
model.

In the next six sections of this paper, learning and memory will
be reexamined in a way that links the two different mathemat-
ical perspectives, i.e. Markovian processes and hazard functions.
In Section 2 the basic framework for Markov chains and general
Markov models is developed with a particular focus on applica-
tions for theories of learning and memory retention. In Section 3
a framework is provided for reexamining learning data in terms of
a hazard function perspective. Also in that section, a general form
of a Markovian process is reexpressed in the form of hazard func-
tions. In learning applications, hazard is associated with the condi-
tional likelihood of establishing a new association in memory on a
particular training trial. However, time and subsequent events can
damage previously establishedmemories. Hazard in the context of
forgetting dealswith the conditional likelihood of amemory loss at
a particular point in time. The topic of hazard and memory reten-
tion is explored in Section 4. A case is made, based on a theoretical
and empirical utilization of a surrogate function, that the hazard

1 There are other classic books of mathematical psychology that discuss random
walk models, which are a form of a Markov chain (e.g., Luce, 1986; Townsend &
Ashby, 1983).

associatedwithmemory loss has a peaked shape. A surrogate func-
tion is a function that can be used to extract information about
the empirical properties of the hazard functionwithout directly fit-
ting a hazard function. In Section 5 the Chechile (2006) two trace
hazard (TTH) model is advanced as the appropriate description of
the hazard changes caused by interference in the retention inter-
val. This theory is contrastedwith othermemorymodels, including
the Estes (1997) dual-trace model. Although Estes did not advance
a Markov model for general memory loss, a Markovian model for
memory loss can be nonetheless formulated. In Section 5 a Marko-
vian version of the TTH model is developed, and in Section 6 a
Markovianmodel is developed for the recent Implicit–Explicit Sep-
aration (IES) model by Chechile et al. (2012). The IES model is a
multinomial processing tree (MPT) model that enables the estima-
tion of four basic states for representing the knowledge that the
subject has in memory associated with a target event. The four
types of information storage are explicit, implicit, fractional, and
non-storage. The Markovian framework for the IES model leads to
a new interpretation of the relationship between explicit and im-
plicit memory. Finally in Section 7 some concluding observations
are discussed.

2. Markovian models and hazard models

There are four subsections contained in this section. The first
subsection defines key Markovian concepts and illustrates these
ideas with four specialized models for either learning or memory
retention applications. These models will be discussed in later
sections of the paper. The second subsection covers key ideas
from the hazard function literature and develops a general discrete
Weibull model for learning applications. The third subsection
deals with linking a general Markovian learning model to hazard
values. In a similar fashion, the fourth subsection links a general
Markovian forgetting model to hazard functions.

2.1. The Markovian framework

The context for a Markov process is in terms of a state
space S and a discrete, ordered, support domain. The state space
can be quite general. For some applications, like that of a one-
dimensional randomwalk, the states correspond to all the discrete
outcomes between the two end points. In psychological random
walk applications, only the states for the two ends are observable
and the other states are not directly observable. However, for
other applications, there might only be two states for the Markov
process, with both states representing extremes. For example, in a
memory retention application, one state could be a target storage
state and another state could be for the loss of target information.
As for the support for a Markov process, there are also several
possibilities. For many of our applications, the support domain is
in terms of discrete increments of time, i.e. t1 < t2 < t3 < · · ·

where tn = n τ , τ > 0. For other applications, the support is
in terms of the number of study trials, i = 1, 2, . . .. Although
the support set might be countably infinite for a general Markov
process, we will treat the support in this paper as finite because
there are only a finite number of discrete steps that occur over the
life of the subject. In general, let us denote the support domain
as J = 1, 2, . . .. The framework for a Markov process is one
where the stochastic system advances, one step at a time, over
the support domain, but at each step, the stochastic system is
in one of m denumerable states, i.e. S = {S1, S2, . . . , Sm}. The
general Markovian property is when the transition of the state of
the system from step n to step n+ 1 is a probabilistic process with
the transition probability only being dependent on the current
state of the system. Let p(n)

ij denote the transition probability to
state Si on step n+1 given that the systemwas in state Sj for step n.
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