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HIGHLIGHTS

e Dynamic noise impairs performance and shifts RT distributions on the time axis.

o We describe two diffusion process models for discrimination in dynamic noise.

e The integrated system model is based on a time-changed diffusion process.

e The release from inhibition model is based on known physiological processes.

e Both models gave good accounts of the RT distributions and accuracy from the task.
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The speed and accuracy of discrimination of featurally-defined stimuli such as letters, oriented bars,
and Gabor patches are reduced when they are embedded in dynamic visual noise, but, unlike other
discriminability manipulations, dynamic noise produces significant shifts of RT distributions on the time
axis. These shifts appear to be associated with a delay in the onset of evidence accumulation by a
decision process until a stable perceptual representation of the stimulus has formed. We consider two
models for this task, which assume that evidence accumulation and perceptual processes are dynamically
coupled. One is a time-changed diffusion model in which the drift and diffusion coefficient grow in
proportion to one another. The other is a release from inhibition model, in which the emerging perceptual
representation modulates an Ornstein-Uhlenbeck decay coefficient. Both models successfully reproduce
the families of RT distributions found in the dynamic noise task, including the shifts in the leading edge of
the distribution and the pattern of fast errors. We conclude that both models are plausible psychological
models for this task.
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1. Introduction theory first confronted the issue that has confronted every process
model since then, namely, the inherent variability of behavior: the

In contributing an article to honor William Estes as one of the fact that organisms, whether human or nonhuman, do not exhibit

creators of mathematical psychology, we begin by reflecting on
what it means to have done as Estes did, and created a discipline
where none was before. Estes made numerous deep and influen-
tial contributions during his long and distinguished career, but,
arguably, none had greater or more enduring significance for the
future of the discipline than his original seminal work in animal
learning, stimulus sampling theory (Estes, 1950, 1955a,b; Estes &
Burke, 1953). In creating stimulus sampling theory, Estes not only
constructed an elegant and powerful theory of learning, but also
showed by example just what it means to develop and test a pro-
cess model of a psychological phenomenon. Stimulus sampling
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the same behavior from trial to trial or from one presentation of
a stimulus to the next. Consequently, a process model for learning
must be expressed at the level of operators that show how choice
probabilities evolve from trial to trial. Such probabilistic variation
is not just a layering of a measurement error model on top of a de-
terministic process, but is integral to the theory itself.

Those of us who work with process models for psychological
phenomena belong to a tradition begun by Estes and are
profoundly indebted to him. From his example we understand that
the development of a process model is the discipline of expressing
a psychological explanation in quantitative terms and, in so doing,
of determining precisely what its empirical consequences might
be. It is also the discipline of testing a quantitatively expressed
explanation against empirical data. Like all applied mathematics,
it is the art of making complex problems tractable. In this, it is
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Fig. 1. Letter discrimination in dynamic noise. (a) Example stimulus. The upper panel shows a single frame in which 0.35 of the pixels have been inverted. The lower panel
shows an average over 10 frames. Because stimuli would have been integrated by early visual filters, the lower panel provides a better indication of the perceptual experience
of the task. (b) Quantile probability plots for five levels of discriminability presented under speed or accuracy instructions. The lines on the graph, bottom to top, are the 0.1,
0.3, 0.5, 0.7, and 0.9 quantiles of the RT distributions. The response probabilities on the x-axis are the probabilities of correct responses, p, and error responses, 1 — p. The
five distributions on the right in each panel are the distributions of correct responses; the five distributions on the left are the distributions of errors. The data are quantile

averages over participants. Note the different y-axis scaling for the two conditions.

the art of distinguishing the essential from the superfluous and
the simple from the simplistic. Anyone who does work of this kind
knows what the benefits of this undertaking can be. The attempt to
express a psychological principle in quantitative terms is usually,
in the first instance, a process of discovering that the things you
thought were precise are in fact not so. It is also a way of flushing
out unexamined assumptions and of exposing them to critical
scrutiny.

Estes began his long career during the ascendancy of behav-
iorism and finished it long after the cognitive revolution had
become the cognitive orthodoxy. The evolution of his research in-
terests over time reflected the change in the conceptual landscape,
from learning, which was the driving force for behaviorism, to per-
ception, memory, categorization, and decision-making. These are
topics that remain of central concern to mathematical psycholo-
gists today. A number of his later papers focused on the problem of
determining whether variables that affect performance in visual
recognition tasks do so by affecting perceptual or decision pro-
cesses (Bjork & Estes, 1973; Estes, 1972, 1975, 1982). Estes was
profoundly aware of the contribution made by decision processes,
which match incoming sensory information against task represen-
tations in immediate memory, to performance in simple cognitive
tasks. He was also aware of the hazards of theorizing about per-
ceptual and decision processes in isolation, arguing that a proper
understanding could only be gained by considering how they act
in concert. That question, although framed in somewhat different
terms, is the focus of this article.

1.1. Two-choice perceptual discrimination in dynamic noise

In a sequence of 12 experiments, Ratcliff and Smith (2010) in-
vestigated performance in a novel two-choice discrimination task
in which letter stimuli were degraded by embedding them in dy-
namic visual noise. In their task, a randomly-chosen proportion of
the pixels in the letter and the background were inverted in each
consecutive frame of the display. Like other manipulations of dis-
criminability, dynamic noise increased response time (RT) and re-
duced accuracy, but unlike other manipulations, it also produced
significant shifts of the RT distribution on the time axis. These were
manifested as changes in the distribution’s leading edge, as in-
dexed by its 0.10 quantile. Changes in the 0.10 quantile depend
only on the fastest 10% of responses in the distribution and are rel-
atively independent of changes in its variance or higher moments.
Ratcliff and Smith found that dynamic noise shifted the leading
edge of the distribution by more than 100 ms in the most difficult
as compared to the easiest condition.

Fig. 1 shows examples of the stimuli used by Ratcliff and Smith
(2010) in their Experiment 1, together with a quantile-probability
plot (Ratcliff & Tuerlinckx, 2002) of group data from an unpub-
lished experiment that used the same task. The details of the
method can be found in Appendix A. Participants performed the
task under speed and accuracy instructions in alternating blocks at
five levels of stimulus discriminability, formed by inverting 0.35,
0.40, 0.425, 0.45, 0.475 of the pixels in the display. (When 0.5 of
the pixels are inverted, the display becomes a homogeneous, ran-
dom field of black and white pixels that carries no stimulus infor-
mation.) In quantile probability plots, selected quantiles of the RT
distributions for correct responses and errors are plotted against
the choice probabilities, p; and 1 — p;, for each condition, i. Such
plots show how distribution shape, response accuracy, and the re-
lationship between mean RTs for correct responses and errors all
change as stimulus discriminability is varied. The distributions in
Fig. 1 have been summarized using their 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles.

The unusual result in Fig. 1 is the systematic change in the lead-
ing edge of the distribution as a function of noise, which appears
as a bowing of the curve representing the 0.1 quantile (the bottom
curve in the plot) in both the speed and accuracy conditions. This is
unlike the results found in the vast majority of speeded two-choice
decision tasks. In most tasks, most of the changes in the distribu-
tions are in the upper quantiles; the leading edge is relatively un-
affected and the curve representing the 0.1 quantile is almost flat
(Ratcliff & Smith, 2004). Following Ratcliff and Smith (2010), we re-
fer to the bowing of the 0.1 quantile function in Fig. 1 as the leading
edge effect.

The leading edge effect in Ratcliff and Smith’s (2010) study
was found only with letter discrimination in dynamic noise. There
was no leading edge effect in a brightness discrimination task
with dynamic noise, in which participants were required to judge
whether the average proportion of light pixels in the display
was greater or less than 50%. There was no leading edge effect
in a letter discrimination task, in which letters were degraded
by a simultaneous structure mask composed of random letter
fragments in the same stroke font as the stimuli. There was a
smaller leading edge effect in the letter discrimination task when
the noise was static rather than dynamic.

Ratcliff and Smith (2010) attributed the leading edge effect to a
delay in the onset of information accumulation by a decision pro-
cess until a stable perceptual representation of the stimulus had
formed. The phenomenological basis for this interpretation is com-
pelling: When letters are viewed in dynamic noise, they appear
to emerge slowly out of the noise. The perceptual experience is
quite unlike that in the masking-by-structure discrimination task,
in which the stimuli seem to appear instantaneously.
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