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h i g h l i g h t s

• We explore the precise behavior of the serial exhaustive SIC function for n = 2.
• We provide a generalization of the SIC function to an arbitrary number of processes.
• We analyze the generalized SIC for both parallel and serial models with minimum and maximum time stopping rules.
• We demonstrate application of the theorems to data from a short-term memory search task.
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a b s t r a c t

The Survivor Interaction Contrast (SIC) is a distribution-freemeasure for assessing the fundamental prop-
erties of human information processing such as architecture (i.e., serial or parallel) and stopping rule
(i.e., minimum time or maximum time). Despite its demonstrated utility, there are some vital gaps in
our knowledge: first, the shape of the serial maximum time SIC is theoretically unclear, although the one
0-crossing negative-to-positive signature has been found repeatedly in the simulations. Second, the the-
ories of SIC have been restricted to two-process cases, which restrict the applications to a limited class of
models and data sets. In this paper, we first prove that in the two-process case, a mild condition known as
strictly log-concavity is sufficient as a guarantor of a single 0-crossing of the serial maximum time SIC.We
then extend the definition of SIC to an arbitrary number of processes, and develop implicated methodol-
ogy of SIC in its generalized form, again in a distribution-free manner, for both parallel and serial models
in conjunction with both the minimum time and maximum time stopping rules. We conclude the paper
by demonstrating application of the theorems to data from a short-term memory search task.

Published by Elsevier Inc.

1. Introduction

The question of whether people can perform multiple percep-
tual or mental operations simultaneously, that is, parallel process-
ing, vs. whether items or tasks must proceed serially (one at a
time), has intrigued psychologists since the birth of experimen-
tal psychology. Historically, reaction time (RT) has been the pri-
mary measure on this question. The work of the physiologist F.C.
Donders (e.g., Donders, 1868) was seminal in this regard, although
other researchers, such as W. Wundt, were more prolific with re-
gard to early results on human cognition.

With the revolution brought about through cognitive science
and cognitive psychology in the 1950s and 1960s, questions such
as the parallel vs. serial conundrum, which had lain dormant since
the nineteenth century saw a renaissance of interest.
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The serial vs. parallel topic is our primary concern here. How-
ever, it may be worth a moment’s pondering, given the pioneering
role of William K. Estes in the advent of mathematical psychol-
ogy, of how the latter field, and Estes’ research, fit into, and con-
tributed to, modern cognitive psychology. Three tributaries fed the
new stream of mathematical psychology in the 1950s and 60s.
These were: 1. Signal detection theory, child of psychophysics and
sensory processes, mathematical communications theory, applied
physics, and statistical decisionmaking (e.g., Green & Swets, 1966;
Tanner & Swets, 1954). 2. Foundationalmeasurement the offspring
of S.S. Stevens’ brilliant but non-rigorous statements concern-
ing measurement in psychology fostered and rendered rigorous
through strands from philosophy, mathematical logic and abstract
algebra (e.g., Krantz, Luce, Suppes, & Tversky, 1971; Roberts &
Zinnes, 1963). 3. Mathematical learning theorywhichwent back at
least to Clark Hull (e.g., Hull, 1952); or see Koch’s elegant summary
in Modern Learning Theory (Koch, 1954). This branch is where we
find the Estes trailblazing Stimulus Sampling Theory (Estes, 1955,
1959), a precise, quantitative theory of human and animal learning.
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This theory,which still impacts awide spectrumof research in cog-
nition today, led to a score of research advances by Estes and col-
leagues as well as a host of other scientists (e.g., Atkinson & Estes,
1963; Friedman et al., 1964).

Estes was an early entrant into the embryonic cognitive move-
ment. His research in this domain was likely influenced by the
burgeoning efforts utilizing the information processing approach,
perhaps the early dominant theme in this new domain. Early pio-
neers includedWendell Garner (e.g., Garner, 1962), Donald Broad-
bent (e.g., Broadbent, 1958), William Hick (e.g. Hick, 1952), and
Colin Cherry (e.g. Cherry, 1953) (note the heavy presence of British
psychologists).

American psychologists were soon contributing to this rapidly
expanding field which bridged sensory processes, higher percep-
tion, and elementary cognition. Prime examples are Charles Erik-
sen (e.g., Eriksen & Spencer, 1969), Michael Posner (e.g., Posner,
1978), Raymond Nickerson (e.g., Nickerson, 1972), Ralph Haber
(e.g., Haber & Hershenson, 1973), and Howard Egeth (e.g., Egeth,
1966). And, Bill Estes of course.

The employment of ingenious experimental designs to answer
questions concerning whether humans perform visual or mem-
ory search in a serial or parallel fashion provide apt examples of
new trends making an appearance in the 60s and 70s. (e.g., Sper-
ling, 1960, 1967; Sternberg, 1966, 1975). Estes and colleagues pro-
vided some classic early results in this domain in extending, and
mathematicallymodeling extensions of Sperlings innovative visual
search experimental designs. For instance, Estes and Taylor (1964)
developed a new detection method as well as associated models
in this vein. Also, Estes and Taylor (1966) and Estes and Wessel
(1966)were beginning to explore phenomena andhuman informa-
tion processing mechanisms related to the presence of redundant
signals in visual displays.

The Sternberg (1966) innovative and rather startling RT data in
short termmemory search, in particular, had a profound influence
on thinking in the parallel vs. serial processing literature. In fact, a
massive body of experimental literature over several decades has
been based on the inference that increasing, more-or-less straight-
line RT functions of the workload n,1 the number of comparisons
to perform, imply serial processing. However, the ability of lim-
ited capacity parallel models to mimic serial models, in the strong
sense of mathematical equivalence, was demonstrated relatively
early on (e.g., Atkinson, Holmgren, & Juola, 1969; Murdock, 1971;
Townsend, 1969, 1971).2 And in fact, the reverse possibility of se-
rial models to mimic parallel models was also proven (Townsend,
1969, 1971, 1972, 1974). The early mathematical results were con-
fined to limited types of RT distributions, but later developments
extended to arbitrary probability distributions (Townsend, 1976;
Townsend & Ashby, 1983; Vorberg, 1977).

The parallel models which perfectly mimic serial models are
limited capacity in the sense that their processes degrade in their ef-
ficiency as the workload n increases. Suchmodels intuitively make
the predictions associated with serial processing, specifically the
linear RT graphs of the workload n (e.g., Townsend, 1971). Fortu-
nately, theory-driven experimental methodologies have been in-
vented in recent years that are considerably more robust in the

1 An increment in workload is usually natural to define in terms of number of
dimensions, or subtasks involved in some task. We shall often refer simply to items
or, sometimes, processes as generic tags for the discrete objects being processed or
the conduits working on them. The unit of workload typically relates in a natural
fashion to the task. For example, if a memory search task involves examination of a
list of letters, the unitmay bemade straightforwardly in terms of letters. Then nmay
stand for both the workload in the task and the number of letters in the memory
set.
2 For an up to date review of the parallel–serial identifiability issue, see

Townsend, Yang, and Burns (2011).

assessment of mental architecture, particularly serial vs. parallel
processing (Scharff, Palmer, &Moore, 2011; Townsend, 1976, 1981,
1990a; Townsend & Nozawa, 1995; Townsend &Wenger, 2004). In
particular, the new methodologies often allow architectural infer-
ences even though the workload is held constant, so that capacity
does not confound architectural inferences.

Our focus here lies within the general approach referred to as
Systems Factorial Technology (hereafter SFT; see Townsend, 1992;
Townsend & Nozawa, 1995). A number of investigators have made
essential contributions to this literature including Schweickert and
Dzhafarov and colleagues (Dzhafarov, 1997; Dzhafarov, Schwe-
ickert, & Sung, 2004; Schweickert, 1978, 1982; Schweickert &
Giorgini, 1999; Schweickert, Giorgini, & Dzhafarov, 2000). SFT re-
lies heavily onmathematical propositions indicating experimental
conditions where strong tests of architectures may be found, al-
though other testable features, such as capacity, are also encom-
passed presently. The bulk of theoretical work has been performed
under the assumption of selective influence. Our scope prohibits de-
tails here, butwe can loosely define selective influence as the prop-
erty that certain experimental factors act only on specific processes
in the overall system (see Section 2.1 for more detailed discussion
on selective influence). When selective influence is in force, pre-
dictions of serial and parallel models and the pertinent decisional
stopping rules are strikingly distinct. This paper is intended to sig-
nificantly strengthen and extend these predictions.

SFT requires the survivor function S(t), which is simply the
complement of the well-known cumulative distribution (or fre-
quency) function (the CDF) written as F(t). That is, S(t) = 1−F(t).
A central statistical diagnostic is then the survivor interaction con-
trast (or SIC) function. It performs a double difference contrast op-
eration on the survivor functions that is analogous to the mean
interaction contrast (orMIC) employed on the arithmetic RTmeans
in earlier investigations (e.g., Schweickert, 1978; Sternberg, 1966).
However, it now expresses a highly diagnostic function of time,
rather than a single number.

Despite the successful deployment of the SICmeasure, there are
some vital gaps in our knowledge, restricting the applications to a
limited class ofmodels and data sets. Thesewill be sketchedwithin
a brief presentation of relevant knowledge we do have.

We know that, for n = 2, serial minimum time models predict
perfectly flat signatures whereas serial maximum time (i.e., the
classical exhaustive processing time stopping rule; see Sternberg,
1969; Townsend, 1974) predictions must include at least one wig-
gle (i.e., the up-and-down excursions marked by 0-crossings) be-
low and above 0 (Townsend & Nozawa, 1995). However, although
simulations have intimated that there is a single wiggle passing
through 0, in a negative-to-positive direction as exhibited in Fig. 1
(the top right panel), this has not been shown to be true for all dis-
tributions. In fact, the exact shape of the SIC curve is as yet un-
known.

Therefore, in elucidating further properties of serial exhaustive
processing: A. We first prove that serial exhaustive processing in-
evitably predicts an odd number of 0-crossings in the n = 2 case.
B. Next, we show that a certain readily-met mathematical condi-
tion is sufficient to force the behavior indicated through our simu-
lations, a single 0-crossing of the SIC function.

The behavior our SIC signatures have also remained unidenti-
fied for n > 2, in the case of all studied serial and parallel processes
up to now. The quite intriguing behaviors in the case of the serial
and parallel models with varying stopping rules, and for arbitrary
values of n, are next developed for: A. Serial minimum time pro-
cessing. B. Serial maximum time processing. C. Parallel minimum
time processing. D. Parallel maximum time processing.

Successful completion of the above goals should significantly
expand the possibilities of application. Since mathematical details
of SFT in general, have been published elsewhere (e.g., Townsend &
Nozawa, 1995) and tutorials are available (e.g., Townsend, Fific, &
Neufeld, 2007; Townsend &Wenger, 2004; Townsend et al., 2011),
only the bare bones SFT can be displayed here.
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