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• We prove the mimicry of a Wiener process by an independent race model.
• We examine the numerical computation of the mimicking boundaries.
• We show that the mimicking boundaries are time-varying and asymmetric.
• We propose an equivalent symmetric race model.
• We examine the mimicry of full diffusion model.
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a b s t r a c t

Sequential sampling models are widely used in modeling the empirical data obtained from different
decision making experiments. Since 1960s, several instantiations of these models have been proposed.
A common assumption among these models is that the subject accumulates noisy information during the
time course of a decision. The decision is made when the accumulated information favoring one of the
responses reaches a decision boundary. Different models, however, make different assumptions about
the information accumulation process and the implementation of the decision boundaries. Comparison
among these models has proven to be challenging. In this paper we investigate the relationship between
several of these models using a theoretical framework called the inverse first passage time problem.
This framework has been used in the literature of applied probability theory in investigating the range
of the first passage time distributions that can be produced by a stochastic process. In this paper, we
use this framework to prove that any Wiener process model with two time-constant boundaries can be
mimicked by an independent race model with time-varying boundaries. We also examine the numerical
computation of themimicking boundaries.We show that themimicking boundaries of the racemodel are
not symmetric. We then propose an equivalent race model in which the boundaries are symmetric and
time-constant but the drift coefficients are time-varying.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades, a large amount of research has in-
vestigated the mechanisms underlying simple perceptual decision
making. The basic idea is to examine how the subjects’ reaction
time and accuracy change as a function of the properties of noisy
stimuli. Describing the pattern of this empirical data computation-
ally has proven to be a challenging task. A ‘‘good’’ computational
model should be able to describe the relation between the physi-
cal properties of the stimulus (e.g., the salience and discriminabil-
ity) and the shape of the reaction time distributions, the accuracy,
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the relative speed of the correct and incorrect responses and the
effect of emphasizing speed or accuracy in the instructions. Neu-
rophysiological data obtained from the activity of populations of
neurons during perceptual decision making experiments impose
more restrictions on the computational models. One class of mod-
els which has been successful in accounting for these patterns of
data is sequential sampling models. In this modeling framework, it
is assumed that after the presentation of the stimulus, the subject
starts accumulating noisy information favoring each alternative re-
sponse in the task. The subject responds in a trial when the accu-
mulated information favoring one of the alternatives reaches a spe-
cific amount called the decision threshold.

Several instantiations of this framework have been proposed
by researchers including the full diffusion model (Ratcliff, 1978),
Ornstein–Uhlenbeck (OU) model (Busemeyer & Townsend, 1993),
leaky competing accumulator (LCA) model (Usher & McClelland,

http://dx.doi.org/10.1016/j.jmp.2015.08.007
0022-2496/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmp.2015.08.007
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2015.08.007&domain=pdf
mailto:arakhoda@indiana.edu
http://dx.doi.org/10.1016/j.jmp.2015.08.007


38 A. Khodadadi, J.T. Townsend / Journal of Mathematical Psychology 68–69 (2015) 37–48

2001), linear ballistic accumulator (LBA) model (Brown & Heath-
cote, 2008), race models (Eidels, Houpt, Altieri, Pei, & Townsend,
2011; Smith&Vickers, 1988; Townsend&Ashby, 1983) and accrual
halting models (Townsend, Houpt, & Silbert, 2012). These mod-
els differ in their assumptions about the information accumulation
process and the way that the decision is made based on this infor-
mation.

Comparison among these models poses another challenge to
the computational modeling of perceptual decisionmaking. Model
comparison is particularly challenging because in many situations
these models make similar predictions. Two general approaches
have been employed by researchers to compare these models. In
the first approach, the models are fitted to the empirical data and
are compared based on some statistical measures of goodness of
fit, for example, chi-square, sum of squared errors, BIC and AIC
(Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 2002; Ratcliff, Van
Zandt, & McKoon, 1999; Tsetsos, Gao, McClelland, & Usher, 2012;
Van Zandt, Colonius, & Proctor, 2000). Besides quantitative fit,
the qualitative predictions of each model are compared to the
patterns in the data. For example, a common finding in reaction
time experiments is that the mean reaction times for the correct
and incorrect responses are not the same. Any model that cannot
predict this pattern is not likely to be a good model of these
experimental data.

The second approach is to examine the theoretical relation-
ship between these models without considering the data (Dzha-
farov, 1993; Jones & Dzhafarov, 2014; Pike, 1968; Smith, 2010;
Townsend, 1976; Townsend & Ashby, 1983; Zhang, Lee, Vandeker-
ckhove,Maris, &Wagenmakers, 2014). Of particular interest in this
vein of research is the problemofmodelmimicry. Twomodels of the
reaction timemimic each other if they produce the exact same dis-
tributions of reaction time. The research in this area is less preva-
lent. One main reason is that, besides a few exceptions, the ana-
lytic form of the distributions of reaction time predicted by these
models is not known. Therefore, it is hard to determine the range
of patterns that can be produced by each model. This is especially
the case when the accumulation process is modeled as a stochastic
process. Recently, Jones and Dzhafarov (2014) have theoretically
investigated the range of reaction time distributions that can be
produced by several classes of models. In the models considered
in their paper, neither the accumulation process nor the decision
thresholds are stochastic processes. Instead, the models consist of
random variables and deterministic time-varying functions.1 More
recently, Zhang et al. (2014) proposed a new method for investi-
gating the mimicry between sequential sampling models in which
the accumulation process is a stochastic process and the decision
thresholds are time-varying functions. In their method, the prob-
lem of mimicking a model by another model is translated into an-
other problem called the inverse first passage time problem. Amodel
can mimic another one if the corresponding inverse first passage
time problem is solvable. The authors considered the mimicry be-
tween a diffusion model and an accumulator model. They showed
how one can numerically compute two time-varying boundaries
for a diffusion model such that it mimics an accumulator model
with symmetric boundaries. Although their simulation results sug-
gest that an accumulator model can always be mimicked by a dif-
fusion model, no theoretical analysis is provided in the paper.

In this paper, we take the same approach for investigating
mimicry among sequential sampling models. Specifically, we con-
sider the following question: can a Wiener process with constant

1 Even in the Wiener processes considered in Theorems 11 and 12 in Jones and
Dzhafarov (2014) the signal to noise ratio should be so large that the information
accumulation reduces to a deterministic growth rate (see Smith, Ratcliff, &McKoon,
2014).

boundaries bemimicked by an independent racemodel? Themain
goal of this paper is to investigate this question theoretically using
the existing theorems in the stochastic processes literature, partic-
ularly the inverse first passage time problems. To this end, in the
following two sections we introduce the stochastic processes con-
sidered in this paper and give a formal definition of the inverse first
passage time problem. Then, in Section 4 we review some of the
existing theorems regarding the inverse first passage time problem
thatwewill use in deriving our results. In Section 5, we present our
theoretical results on mimicry between theWiener process model
and the independent race model and then in Section 6 the numer-
ical results are reported. In Section 7, we compare our results with
some of the theoretical results in Jones and Dzhafarov (2014). Fi-
nally, Section 9 is devoted to the problem of mimicry of a Wiener
process model by an OU process model.

2. Wiener process and independent race models of decision
making

As explained in the Introduction, in a sequential sampling
model it is assumed that the information favoring each alternative
is accumulated and the subject responds in a trial whenever the
accumulated information reaches a decision boundary. In aWiener
processmodel (also known as theWiener diffusionmodel) of a task
with two alternatives, the accumulated information is modeled
as a stochastic process called the Wiener process. Formally, a
Wiener process X(t) is characterized by the following stochastic
differential equation (SDE):

dX(t) = µ · dt + σ · dB(t). (1)

In this equation, the parametersµ andσ are called the drift and the
diffusion coefficients, respectively. It can be shown that E [X(t)] =

µ · t and Var [X(t)] = σ 2
· t and so these parameters determine the

mean and the variance of the process at each time (see for example
Smith, 2000). The process dB specifies the increments of a zero-
mean Gaussian process. In this paper, we always assume that the
initial value of the process is zero (X(0) = 0).

In this model, it is assumed that the response 1 (response 2)
is chosen in a trial if the process exceeds the decision boundary
b1 (b2) before it hits the other decision boundary b2 (b1). In the
literature of the stochastic processes, the first time that the process
hits a decision boundary is called the first passage time (FPT). In the
sequential sampling models, the FPT of the process is considered
as the subject’s decision time. Formally, the FPTs for the decision
boundaries b1 and b2 are defined as follows:

T1 = inf {t > 0|X(t) ≥ b1 AND X(τ ) > b2, for all τ < t}
T2 = inf {t > 0|X(t) ≤ b2 AND X(τ ) < b1, for all τ < t} .

(2)

Because of the noise term dB in Eq. (1), the FPTs Ti are random
variables. The subject’s reaction time in each trial is a realization
of either of these two random variables. We assume that when the
accumulated information of one accumulator reaches its threshold
first in a trial, the FPT in the other accumulator is∞. To this endwe
adopt the convention that the infimum of an empty set is infinity.

We denote the probability density function (p.d.f.) of Ti by
gi(t) (that is, gi(t) =

d
dt Pr(Ti ≤ t)). It is important to note

that


∞

0 gi(t)dt = Pi, where Pi is the probability of choosing the
response i. This probability is not necessarily 1 and so gi(t) is a
defective probability density function. A sample path of a Wiener
process along with two decision boundaries is shown in the upper
panel of Fig. 1.

Another sequential samplingmodel that we consider in this pa-
per is the independent race model. In an independent race model
there is a separate information accumulator for each alternative re-
sponse. Each accumulator ismodeled as a stochastic process. These
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