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• Is it possible to apply the theory of random sets to decision making under?
• The answer (Proposition 1, Theorem 1, Theorem 2) is yes.
• Our model is compatible with Choquet and MaxMin expected utilities.
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a b s t r a c t

We apply random sets theory to decision making under risk. This leads to a unifying concept which is
compatible with some types of behavior like the Choquet Expected Utility and MaxMin Expected Utility.
We show that the ‘‘expected utility’’ of a random set lottery is easy to calculate. Hence a decision making
model with random sets is actually very tractable.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that the set over which an agent has to make a choice
can expand or contract in a random manner. For instance, if for a
given prices’ system, the agent’s revenue is random then his bud-
get sets (a budget set is a set of goods’ vectors that the agent can
afford givenhis revenue and theprices’ system)will be random, ex-
panding or contracting according to the value takenby the revenue.
How does this agent behave? The idea that a set can be random is
captured by the mathematical notion of random set. It was mainly
used in integral geometry where a random set is considered as a
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pointed process. But since the eighties it has been used in statis-
tics (see Koshevoy, Mottonen, & Oja, 2003, Molchanov, 2005, Vi-
tale, 1983). In inference statistics, a random set is a confidence
region for an estimated parameter. In signal treatment, if you take
a grid of pixels, some of these pixels may be randomly colored
black and white, and so the resulting picture is a random set (see
Goutsias, Mahler, & Nguyen, 1997). Random sets have been used
(see Molchanov, 2010 for a review) in econometrics and finance.
In econometrics, random sets have paved the way for a thorough
body of literature concerning the issue of partially identified mod-
els (Beresteanu, Molchanov, & Molinari, 2011, 2012).

We argue in this paper that the concept of random sets can also
be useful in decision making theory. This is first because it is a uni-
fying concept which is compatible with several types of behavior:
Knight (Bewley, 2011), Savage (1954), Choquet, MaxMin Expected
Utility-MEU— (Ghirardato, Maccheroni, & Marinacci, 2004; Gilboa
& Schmeidler, 1989). Second we derive (Theorem 1) a property
which claims that the ‘‘expected utility’’ of a random set lottery
is reduced to the ‘‘utility’’ of the expectation of a random set. Hence a
decision making with random sets is actually tractable. Third an-
alyzing specifically the issue of the consistency of the ordering of
random set lotteries (that is, if a random set lottery is preferred to
another random set lottery then the set-valued expectation of the
former is preferred to the set-valued expectation of the latter: see
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Eq. (10)), we show (Theorem 2) that an ordering which satisfies
consistency conditions and line translation invariance is an order-
ing of an α-MEU-type decision maker if and only if α is a constant.
As a consequence, for the class of symmetric random sets, an α-
MEU-type Decision Maker can be viewed as the Choquet expected
ordering with symmetric priors.

We study in this paper the risk evaluation of random set lotter-
ies. We consider the Savage framework (Savage, 1954) as a specific
case in which the random set lotteries are in the form of constant
maps or, equivalently, single-valued random sets lotteries. Specifi-
cally, the states space is a single-valued random setwithin the Sav-
age approach.

Our approach is not new. Ellsberg for instance (Ellsberg, 1961)
has criticized the Savage axioms and has considered a lottery with
a non-single-valued random set. We recall that in his experiment,
there is an urn which contains red, blue and yellow balls such that
the red balls constitute one third and there is no prior information
about the proportion of the blue balls.

Let us use the Ellsberg paradox in order to illustrate the con-
cept of random set lottery. Let us model Ellsberg’s urn as a ran-
dom set. Let us consider a two-element probability space Ω =

{ω1, ω2} with the Boolean algebra 2Ω and a distribution P(ω1) =
1
3 , P(ω2) =

2
3 . Consider the three-dimensional vector spaceR3 and

denote its basis vectors by r = (1, 0, 0), b = (0, 1, 0) and y =

(0, 0, 1). Then a random set R sends ω1 to the point r and ω2 to the
segment [b, y] := {λb + (1 − λ)y, 0 ≤ λ ≤ 1}. Such a random set
is not a single-valued random set since, either with probability 1

3 it
might be a vector r , or with probability 2

3 it might be the segment
[b, y]. Using the Aumann expectation, the expectation of the ran-
dom set is the set of expectations of the random vectors

 1
3 , r,

2
3 ,

λb + (1 − λ)y

, that is the segment [

1
3 r +

2
3b,

1
3 r +

2
3y].

In the Ellsberg paradox, a Decision Maker has to compare four
‘‘lotteries’’: A—to get $100 if he picks a red ball; B—to get $100 if he
picks a blue ball; C—to get $100 if he picks a red or yellow ball; and
D—to get $100 if he picks a blue or yellow ball. Experiments show
that people prefer A to B rather than B to A, and D to C rather than
vice versa. This ordering is inconsistent with the Savage expected
utility theory.

In terms of the randomset R, theDecisionMaker has to compare
the following linear functions on R3, which are specified by the
values at vectors r, b and y by:

uA(r) = $100, uA(b) = $0, uA(y) = $0;
uB(r) = $0, uB(b) = $100, uB(y) = $0;
uC (r) = $100, uC (b) = $0, uC (y) = $100;
uD(r) = $0, uD(b) = $100, uD(y) = $100.

(1)

Let us calculate the expected utilities. For any affine function
u : Rn

→ R, the expected utility for the above random set R is
[
1
3u(r) +

2
3u(b),

1
3u(r) +

2
3u(y)]. Hence the expected utilities are:

EA = [
1
3uA(r)+ 2

3uA(b), 1
3uA(r)+ 2

3uA(y)] = $ 100
3 ; EB = [$0, $ 200

3 ];

EC = [$ 100
3 , $100] and ED = $ 200

3 .
As a consequence, choosing between the four ‘‘lotteries’’ A, B,

C and D is tantamount to choosing between the four segments
100
3 ,

0, 200

3


,
 100

3 , 100

, and 200

3 (the first and fourth being degen-
erate segments, singletons).

The problem is that there exists no obvious total preference or-
dering over a set of segments (Diaye, 1999). Let us consider for
instance the natural relation≼R = ∼R + ≺R (where+ is the union-
disjunction operator) defined by [a, b] ∼R[c, d] if b ≤ c and [a, b]
≺R[c, d] if b < c . Then one can observe that EA and EB are incompa-
rable with respect to ≼R, as well as EB and EC . Moreover EC and ED
are incomparable while EA ≼R EC , EA ≼R ED and EB ≼R ED. Thus even
if the Decision Maker chooses according to ≼̃ a total extension of
≼R, itmay occur that EB≼̃EA and EC ≼̃ED. In otherwords, the Ellsberg

paradox is compatible with random sets decision making. Never-
theless not all behaviors are compatible with random sets decision
making since we allow only weak order (transitive and reflexive)
preference over the set of segments (see Section 3).

What is interesting with using random sets lotteries is that we
are still in a framework of a choice under risk. Of course the lotter-
ies here are no longer necessarily single-valued random sets. The
message from our random sets decision making model is that us-
ing set-valued lotteries leads us to the conclusion that the Deci-
sion Maker’s preference on the sets of lotteries is not necessarily a
total ordering and this will condition his choice structure. By this
move some patterns are feasible which are not allowed in the case
of single-valued random sets or the constant utility function.

To conclude, the use of random set lotteries permits us to keep
the framework of decision under risk when the way the lottery is
modeled is more general, from a single-valued lottery to a set val-
ued one. The purpose of this paper is to present a model of deci-
sion making for (non-constant) random sets. We show that such
a model includes most models (Etner, Jeleva, & Tallon, 2012) like
Choquet or α-MaxMin Expected Utility.

2. Random sets

Let S be a state space and let X be the set of measurable func-
tions on S with respect to the σ -field of measurable sets S. Then
the dual space X∗ is identifiedwith the set of signedmeasures on S.
We letF (X∗) denote the set of closed convex subsets of X∗,K(X∗)

denote the set of compact subsets of X∗, and G(X∗) denote the set
of open subsets of X∗, respectively. Let Ω be another state space.
Let A be a σ -algebra over Ω and P be a probability function on A.
(Ω, A, P) is called a probability space.

Amapping R : Ω → F (X∗) ismeasurable if, for any compact set
K ∈ K(X∗) and any finite collection of open sets Gi ∈ G(X∗), i =

1, . . . , k, the set {ω : R(ω) ∩ K = ∅, R(ω) ∩ G1 ≠ ∅, . . . , R(ω) ∩

Gk ≠ ∅} belongs to A. Moreover, the values P{ω : R(ω) ∩ K =

∅, R(ω)∩G1 ≠ ∅, . . . , R(ω)∩Gk ≠ ∅} form a probability distribu-
tion R∗(P) on the σ -algebra σF of subsets ofF (X∗) spanned by the
sets of the form {F ∈ F (X∗) : F∩K = ∅, F∩G1 ≠ ∅, . . . , F∩Gk ≠

∅}, K ∈ K(X∗) and Gi ∈ G(X∗), i = 1, . . . , k, k = 1, . . ..

Definition 1. Let (Ω, A, P) be a probability space; then the mea-
surable map1 R : Ω → F (X∗) is said to be a random set.

For a finite set S, the space of measurable functions X is the
Euclidean spaceRS . The dual space of signedmeasure, X∗, is the set
of linear functionals on RS and is isomorphic to RS . The set F (RS)

is the set of closed convex subsets of RS , and the corresponding
σ -algebra is the hit-or-miss topology, meaning that in the above-
defined σ -algebra σF we have to consider usual closed, open and
compact sets in RS (see Matheron, 1975 or Molchanov, 2005).

1 We note that the literature usually uses the notions of capacity (or hitting)
functionals or containment functionals in order to define random sets. A random
set R gives rise to the following functions TR(K) = P({ω : R(ω) ∩ K ≠ ∅}) and
tR(K) = P({ω : R(ω) ⊂ K}), defined for K ranging over closed subsets F of Rn .
These functions are called respectively the capacity functional and the containment
functional. However (see Matheron, 1975, Vitale, 1983), setting a random convex
compact set R is equivalent to setting a measurable map from a probability space
to the set of convex compact of Rn , or else to setting the capacity functional TR , or
to setting the containment functional tR , or a probability distribution R∗(P) on the
σ -algebra σF .
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