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h i g h l i g h t s

• We prove that agents arrive at a common lexicon in a new model of language evolution in a social network.
• The rate of convergence depends on the ‘‘spectral gap’’ of the graph.
• The proof hinges upon a novel relation to coalescent processes, usually seen in the context of population genetics.
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a b s t r a c t

In recent times, there has been an increased interest in theories of language evolution that have an appli-
cability to the study of dialect formation, linguistic change, creolization, the origin of language, and animal
and robot communication systems in general. One particular question that has attracted some interest has
the following general form: how might a group of linguistic agents arrive at a shared communication system
purely through local patterns of interaction andwithout any global agency enforcing uniformity? In this paper,
we consider a natural model of language (or more precisely, word) evolution on a social network, prove
several theoretical properties, and establish connections to related phenomena in biology, social sciences,
and physics.

© 2014 Published by Elsevier Inc.

1. Introduction

In recent times, there has been an increased interest in theo-
ries of language evolution that have an applicability to the study
of dialect formation, linguistic change, creolization, the origin
of language, and animal and robot communication systems in
general (see Hauser, 1997, Kirby, 1999, Niyogi, 2006 and refer-
ences therein). One particular question that has attracted some
interest has the following general form: how might a group of
linguistic agents arrive at a shared communication system purely
through local patterns of interaction and without any global agency
enforcing uniformity? The linguistic agents in question might be
humans, animals, or machines in a multi-agent society. For an
example of interesting simulations that suggest how a shared
vocabulary might emerge in a population, see Baronchelli, Felici,
Caglioti, Loreto, and Steels (2006), Baronchelli, Loreto, and Steels
(2008), de Boer (2005), Steels (1999), Steels and Mcintyre (1999)
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among others. In this paper, we consider a generalization of Liber-
man’s model, prove several theoretical properties, and establish
connections to related phenomena in biology, social sciences, and
physics.

Our model is as follows. For simplicity, we consider how a
commonword for a particular conceptmight emerge through local
interactions even though the agents had different initial beliefs
about the word for this concept. For example agents might use the
phonological forms ‘‘dog’’, ‘‘kukur’’, ‘‘farama’’ etc. to describe the
concept of a canine animal. Thus we imagine a situation where
every time an event in the world occurs that requires the agents
to use a word to describe this event, they may start out by using
different words based on their initial belief about the word for
this event or object. By observing the linguistic behavior of their
neighbors agents might update their beliefs. The question is—will
they eventually arrive at a common word and if so how fast.

1.1. Model

1. Let W be a set of words (phonological forms, codes, signals,
etc.) that may be used to denote a certain concept (meaning or
message).
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2. Let each agent hold a belief that is a probability measure onW.
At time t , we denote the belief of agent i to be b(t)

i .
3. Agents are on a communication network which we model as a

weighted directed graph where vertices correspond to agents.
We further assume that the weight of each directed edge is
positive and that there exists a directed path from any node
to any other. An agent (say i) can only observe the linguistic
actions of its out-neighbors, i.e. nodes to which a directed edge
points from i. We denote weight of the edge from i to j by Aij.

4. The update protocol for the b(t)
i as a function of time is as

follows:
(a) At each time t , each agent i chooses a word w = w

(t)
i ∈

W (randomly from its current belief b(t)
i ) and produces it.

Let X (t)
i , denote the probability measure concentrated at

w
(t)
i . Since w

(t)
i is a random word X (t)

i is correspondingly a
randommeasure.

(b) At every point in time, each agent can observe the words
that their neighbors produce but they have no access to the
private beliefs of these same neighbors.

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij

n
k=1

Aik

.

At every time step, every agent updates its belief by a
weighted combination of its current belief and the words
it has just heard, i.e.,

b(t+1)
i = (1 − α)b(t)

i + α

n
j=1

PijX
(t)
j ,

where α is a fixed real number in the interval (0, 1). We
assume Aii = 0 for each i.

At a time t , let the beliefs of the agents be represented by a
vector

b(t)
:= (b(t)

1 , . . . , b(t)
n )T .

Similarly, let the point measures on words X (t)
i be organized into a

vector

X (t)
:= (X (t)

1 , . . . , X (t)
n )T .

Then the reassignment of beliefs can be expressed succinctly in
matrix formwhere the entries in the vectors involved aremeasures
rather than numbers as

b(t+1)
= (1 − α)b(t)

+ αPX (t). (1)

1.2. Remarks:

1. If beliefs were directly observable and agents updated based
on a weighted combination of their beliefs and that of their
neighbors,

b(t+1)
= (1 − α)b(t)

+ αPb(t), (2)

the system has a simple linear dynamics, where all beliefs con-
verge to a weighted average of the initial beliefs. Thus even-
tually, everyone has the same belief (see Bertsekas & Tsitsiklis,
1997 for pioneering work and Jackson, 2008 for a recent elabo-
ration in an economic context).

2. Our focus in this paper is on the situation where the beliefs are
not observable but only the linguistic actions X (t)

i are (and only
to the immediate neighbors). Therefore, the corresponding dy-
namics follows aMarkov chain. The state space of this chain (de-
fined by Eq. (1)) is the set of all n-tuples of belief vectors. Since
this is continuous, the standard mixing results with finite state
spaces do not apply directly.

1.3. Results:

Our main results are summarized below.
1. With probability 1 (w.p.1), as time tends to infinity, the belief

of each agent converges in total variation distance to one
supported on a single word, common to all agents.

2. w.p.1, there is a finite time T such that for all times t > T , all
agents produce the same fixed word.

3. The rate at which beliefs converge depends upon the mixing
properties of the Markov chain whose transition matrix is P .

4. The rate of convergence is independent of the size of W. One
might think that a populationwhere every agent has one of two
words for the concept would arrive at a sharedword faster than
one in which every agent had a different word for the concept.
This intuition turns out to be incorrect.

5. The proof of these results exposes a natural connection with
coalescent processes and has a parallel in population genetics.

6. Our analysis brings out two different interpretations of the be-
havior of a linguistic agent. In themost direct interpretation, the
agent’s linguistic knowledge of the word is internally encoded
in terms of a belief vector. This belief vector is updated with
experience. In a second interpretation an agent’s representation
of its linguistic knowledge is in terms of a memory stack in
which it literally stores every single word it has heardweighted
by how long ago it heard it and the importance of the person
it heard it from. Such an interpretation is consistent with
exemplar theory. An external observer looking at this agent’s
linguistic actions will not be able to distinguish between these
two different internal representations that the agent may have.

2. Convergence to a shared belief: quantitative results

We will define an auxiliary Markov Chain to model the exem-
plar based view of the evolution of the memory stack. We require
the original n states S corresponding to agents and an additional
n states Ŝ to model whether a word was uttered at time t , or was
embedded in thememory of some agent at that time. Fig. 1 depicts
the evolution of a memory stack.

Let P̃ be the transitionmatrix on the state space S̃ = S∪Ŝ, where
for i, j ∈ S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃(i → j) = P̃(î → j) = αPij,

P̃(i → î) = P̃(î → î) = 1 − α

work

Definition 1. Let Tmix(ϵ) denote the mixing time of P̃ , defined as
the smallest t for which, for each specific choice of v ∈ S̃,
u∈S̃

|P̃ (t)(v → u) − π̃(u)| < ϵ.

Here P̃ (t)(b → c) denotes the probability that a Markov Chain
governed by P̃ starting in b lands in c at the tth time step. Also,
the stationary distribution at i is denoted π̃(i).

The following is the main result of this paper.

Theorem 1. 1. The probability that all agents produce the same
word at times T , T + 1, . . . tends to 1 as T tends to ∞. More
precisely, if

τ = (4n/α2)Tmix

α

4


M = e,

then

P[∀ t≥T
u∈S

X t
u = XT

1 ] > 1 −
MnTe−

T
τ

1 − e−
T
τ

. (3)
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